
Principles of Programming

Chapter 2: Problem Solving

 In this chapter you will learn about:
 Introduction to Problem Solving

 Software development method (SDM)

 Specification of needs

 Problem analysis

 Design and algorithmic representation

 Implementation

 Testing and verification

 Documentation

1NI S1 2009/10

Principles of Programming

Introduction to Problem Solving

 Programming is a problem solving activity. When
you write a program, you are actually writing an
instruction for the computer to solve something
for you.

 Problem solving is the process of transforming
the description of a problem into a solution by
using our knowledge of the problem domain and
by relying on our ability to select and use
appropriate problem-solving strategies,
techniques and tools.

2

Principles of Programming

Case Study

 Problem: Compute the straight-line distance
between two points in a plane.

3

Principles of Programming

Software Development Method (SDM)

 For programmer, we solve problems using Software
Development Method (SDM), which is as follows:
1. Specification of needs

 State the problem clearly

2. Problem analysis
 Describe the input and output information

3. Design and algorithmic representation
 Work the problem by hand for a simple set of data

4. Implementation
 Develop a solution and convert it to a computer program

5. Testing and verification
 Test the solution with a variety of data

6. Documentation
 Document and record information for reference

4

Principles of Programming

Specification of Needs

 Specifying the problem requirements requires
you to state the problem clearly and to gain the
understanding of what to be solved and what
would be the solution.

 When specifying problem requirement, we ask
ourselves the following questions:
 What the problem is.

 What the solution should provide.

 What is needed to solve it.

 If there are constraints and special conditions.

5

Principles of Programming

Case Study

Problem: Compute the straight-line distance between
two points in a plane.

 What the problem is.

 What the solution should provide.

 What is needed to solve it.

 If there are constraints and special conditions.

6

Principles of Programming

Problem Analysis

 Analyzing the problem require us to identify the
following:
 Input(s) to the problem, their form and the input

media to be used

 Output(s) expected from the problem, their form and
the output media to be used

 Special constraints or conditions (if any)

 Any formulas or equations to be used

7

Principles of Programming

Case Study

 Input?

 Point 1 coordinate

 Point 2 coordinate

 Output?

 Distance between points

 Constraint/condition?

 Nil

 Formula/equation?

 Pythagorean theorem

8

Principles of Programming

Designing algorithm

 Designing algorithm to solve the problem
requires you to develop a list of steps, arranged in
a specific logical order which, when executed,
produces the solution for a problem.

 Using top-down design (also called divide and
conquer):
 You first list down the major tasks

 For each major task, you further divide it into sub-
tasks (refinement step)

 When you write algorithm, write it from the
computer’s point of view.

9

Principles of Programming

Designing Algorithm cont..

 An algorithm must satisfy these requirements:
 It may have an input(s)
 It must have an output(s)
 It should not be ambiguous (there should not be different

interpretations to it. Every step in algorithm must be clear
as what it is supposed to do)

 It must be general (it can be used for different inputs)
 It must be correct and it must solve the problem for which

it is designed
 It must execute and terminate in a finite amount of time
 It must be efficient enough so that it can solve the intended

problem using the resource currently available on the
computer

10

Principles of Programming

Case Study

Major Task:
1. Read Point 1 coordinate
2. Read Point 2 coordinate
3. Calculate distance
4. Display the computed distance

However, looking at the above algorithm, we can still further refine
step 3, by introducing the formula to calculate the amount to pay.

After refinement:
1. Read Point 1 coordinate
2. Read Point 2 coordinate

3. Distance = (𝑠𝑖𝑑𝑒 1)2+ (𝑠𝑖𝑑𝑒 2)2

4. Display the computed distance

11

Principles of Programming

Remember, the order of the steps in
algorithm is very important. Consider
the following, will the result be the
same?

1. Display the distance

2. Read Point 1 coordinate

3. Compute distance

4. Read Point 2 coordinate

12

Principles of Programming

Pseudocodes

 A pseudocode is a semiformal, English-like
language with limited vocabulary that can be
used to design and describe algorithms.

 Criteria of a good pseudocode:
 Easy to understand, precise and clear

 Gives the correct solution in all cases

 Eventually ends

13

Principles of Programming

Flowcharts

 Flowcharts is a graph used to depict or show a
step by step solution using symbols which
represent a task.

 The symbols used consist of geometrical shapes
that are connected by flow lines.

 It is an alternative to pseudocoding; whereas a
pseudocode description is verbal, a flowchart is
graphical in nature.

14

Principles of Programming

Flowchart Symbols

15

Terminal symbol - indicates the beginning and
end points of an algorithm.

Process symbol - shows an instruction other than
input, output or selection.

Input-output symbol - shows an input or an output
operation.

Disk storage I/O symbol - indicates input from or
output to disk storage.

Printer output symbol - shows hardcopy printer
output.

Principles of Programming

Flowchart Symbols cont…

16

Selection symbol - shows a selection process
for two-way selection.

Off-page connector - provides continuation of a
logical path on another page.

On-page connector - provides continuation
of logical path at another point in the same
page.

Flow lines - indicate the logical sequence of
execution steps in the algorithm.

Principles of Programming

Control Structure

 An algorithm can be represented using
Pseudocode or Flowchart.

 In 1966, two researchers, C. Bohn and G. Jacopini,
demonstrated that any algorithm can be
described using only 3 control structures:
sequence, selection and repetition.

17

Principles of Programming

Control Structure

 Sequence: A series of steps or statements that
are executed in the order they are written in an
algorithm.

 Selection: Defines two courses of action
depending on the outcome of a condition. A
condition is an expression that is, when
computed, evaluated to either true or false.

 Repetition: Specifies a block of one or more
statements that are repeatedly executed until a
condition is satisfied.

18

Principles of Programming

19

You may have more than
one control structure in one
program in order to solve a
problem.

Principles of Programming

The Sequence control structure

 A series of steps or statements that are executed in the
order they are written in an algorithm.

 The beginning and end of a block of statements can be
optionally marked with the keywords begin and end.

begin

statement 1.

statement 2.

…

…

statement n.

end

20

statement 1

statement 2

…

statement n

begin

end

Principles of Programming

The Sequence control structure

Begin

read birth year

age = current year – birth year

display age

End

21

Problem: calculate a person’s age

read birth year

Age = current year –
birth year

Display age

begin

end

Principles of Programming

The Selection control structure

 Defines two courses of action depending on the outcome
of a condition. A condition is an expression that is, when
computed, evaluated to either true or false.

 The keyword used are if and else.

 Format:

if (condition)

then-part

else

else-part

end_if

22

Condition?

else-

statement(s)

then-

statement(s)

YesNo

Principles of Programming

The Selection control structure

Begin

read age

if (age is greater than 55)

print “Retired”

else

print “Still working”

end_if

End

23

Begin

Read age

End

age > 55?
NOYES

print “Retired” print “Still working”

Begin

read age

if (age > 55)

print “Retired”

else

print “Still working”

end_if

End

Principles of Programming

Pseudocodes: The Selection control structure

 Sometimes in certain situation, we may omit the else-part.

if (number is odd number)

print “This is an odd number”

end_if

 Nested selection structure: basic selection structure that

contains other if/else structure in its then-part or else-part.

if (number is equal to 1)

print “One”

else if (number is equal to 2)

print “Two”

else if (number is equal to 3)

print “Three”

else

print “Other”

end_if

24

Example 1

Example 2

Principles of Programming

Exercise

Draw the flowchart diagram for
Example 1 and Example 2

25

Principles of Programming

The Repetition control structure

 Specifies a block of one or more statements
that are repeatedly executed until a condition
is satisfied.

 The keyword used is while.

 Format:

while (condition)

loop-body

end_while

26

Condition?
Loop

Statement(s)

yes

no

Principles of Programming

Problem: Write a program that reads and displays
the age of 10 people (one after another).

27

For this problem, we need a way to count how many
people whose age have been processed (read and
displayed). Therefore, we introduce a concept of counter,
a variable used to count the number of people whose
age have been processed by the program.

Principles of Programming

Begin

number of users giving his age = 1

while (number of users giving his age <= 10)

read the age from the user.

print the user age.

number of user giving his age + 1

end_while

End

28

Begin

users = 1

while (users <= 10)

read age

print age.

users = users + 1

end_while

End

Counter initialisation

Loop condition

Updating counter

Principles of Programming

29

Begin

End users <= 10?
NO

YES

users = 1

print age

read age

users =users + 1

Principles of Programming

Subsequently..

Begin

number of users giving his age = 0

while (number of users giving his age < 10)

read the age from the user.

print the user age.

number of user giving his age + 1

end_while

End

30

Begin

users = 0

while (users < 10)

read age

print age.

users = users + 1

end_while

End

The loop condition

must less than the

value it requires to

stop

You can start the

counter with ZERO

Be
consistent

Principles of Programming

Little extra…

 Now let us put together everything that you
have learnt so far.

 Problem:

Write a program that will calculate and print the

age of 10 persons, given their birth year. If the age

of the person is above 55, then the program will

print “Retired”, otherwise, the program will print

“Still working”.

31

Principles of Programming

Begin

users = 1

while (users <= 10)

begin

Read birth year

age = current year – birth year

print age

if age > 55

print “Retired”

else

print “Still working”

end_if

users = users + 1

end

end_while

End

32

Note that in this
example, we are

using all the three
control structures:

sequence, selection
and repetition

Example 3

Principles of Programming

Exercise

Draw the flowchart diagram for
Example 3

33

Principles of Programming

Implementation

 The process of implementing an algorithm by
writing a computer program using a programming
language (for example, using C language)

 The output of the program must be the solution
of the intended problem

 The program must not do anything that it is not
supposed to do

(Think of those many viruses, buffer overflows, trojan

horses, etc. that we experience almost daily. All these

result from programs doing more than they were

intended to do)

34

Principles of Programming

Testing and Verification

 Program testing is the process of executing
a program to demonstrate its correctness

 Program verification is the process of
ensuring that a program meets user-
requirement

 After the program is compiled, we must
execute the program and test/verify it with
different inputs before the program can be
released to the public or other users (or to the
instructor of this class)

35

Principles of Programming

Documentation

 Writing description that explain what the
program does.

 Important not only for other people to use or
modify your program, but also for you to
understand your own program after a long time
(believe me, you will forget the details of your
own program after some time ...)

 Can be done in 2 ways:
 Writing comments between the line of codes

 Creating a separate text file to explain the
program

36

Principles of Programming

Documentation cont…

 Documentation is so important because:
 You may return to this program in future to use the

whole of or a part of it again

 Other programmer or end user will need some
information about your program for reference or
maintenance

 You may someday have to modify the program, or may
discover some errors or weaknesses in your program

 Although documentation is listed as the last
stage of software development method, it is
actually an ongoing process which should be
done from the very beginning of the software
development process.

37

Principles of Programming

Exercise time!!!

38

Principles of Programming

Volume calculation

Write a pseudocode and a flowchart for a C
program that reads the value of height, width
and length of a box from the user and prints
its volume.

39

Principles of Programming

Height estimation

Given the following formula to estimate height
of a person based on femur length and
humerus length, design an algorithm to
estimate a person’s height from the femur and
humerus lengths.

Female height = femur length x 1.94 + 28.7

Male height = femur length x 1.88 + 32

Female height = humerus length x 2.8 + 28.2

Female height = humerus length x 2.9 + 27.9

40

Principles of Programming

Sum of 1 to 10

Write a pseudocode or flowchart for a
program that would compute and print the
sum of all integers between 1 and 10.

41

Principles of Programming

Summary

 This chapter introduced the concept of
problem solving: a process of transforming
the description of a problem into a solution.

 A commonly used method – SDM which
consists of 6 steps

 3 basic control structures : sequence,
selection and repetition structures

 Pseudocode and Flow chart

T.H.E E.N.D

42

