
Principles of Programming

Chapter 3

Fundamental of C Programming 
Language

and

Basic Input/Output Function

1S1 2017/18



Principles of Programming

Chapter 3: Fundamental of C and Input/Output

 In this chapter you will learn about:

 C Development Environment

 C Program Structure

 Basic Data Types

 Input/Output function

 Common Programming Error
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Entering, translating, and running a High-Level Language 
Program
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C Program Structure

 An example of simple program in C

#include <stdio.h>

int main(void)

{

printf("I love programming\n");

printf("You will love it too once ");

printf("you know the trick\n");

return(0);

}
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The output

 The previous program will produce the following 
output on your screen

I love programming

You will love it too once you know the trick
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Preprocessor directives

 A C program line begins with # provides an 

instruction to the C preprocessor 

 It is executed before the actual compilation is 
done.

 Two most common directives : 

 #include

 #define  

 In our example (#include<stdio.h>) identifies 
the header file for standard input and output 
needed by the printf().  
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Function main

 Identify the start of the program

 Every C program has a main ( )

 'main' is a C keyword.  We must not use it 
for any other variable.

 Using Visual Studio 2005, C program 
skeleton looks like this:
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int main(void)

{

return (0);
}
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The curly braces { }

 Identify a segment / body of a program
 The start and end of a function

 The start and end of the selection or repetition 
block.

 Since the opening brace indicates the start of 
a segment with the closing brace indicating 
the end of a segment, there must be just as 
many opening braces as closing braces  
(this is a common mistake of beginners)
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Statement
 A specification of an action to be taken by the 

computer as the program executes.

 Each statement in C needs to be terminated with 
semicolon (;) 

 Example:
#include <stdio.h>

int main(void)

{

printf("I" love programming\n");

printf("You will love it too once ");

printf("you know the trick\n");

return (0);

}
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Statement cont…

 Statement has two parts : 
 Declaration

 The part of the program that tells the compiler the 
names of memory cells in a program

 Executable statements

 Program lines that are converted to machine 
language instructions and executed by the 
computer
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C program skeleton

 In short, the basic skeleton of a C program 
looks like this:

#include <stdio.h>

int main(void)

{

statement(s);

return(0);

}
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Preprocessor directives

Function main

Start of segment

End of segment



Principles of Programming

Input/Output Operations

 Input operation

 an instruction that copies data from an input 

device into memory

 Output operation

 an instruction that displays information stored in 

memory to the output devices (such as the monitor 

screen)
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Input/Output Functions

 A C function that performs an input or output 
operation

 A few functions that are pre-defined in the 
header file <stdio.h> such as :

 printf()

 scanf()

 getchar() & putchar()
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The printf function

 Used to send data to the standard output 
(usually the monitor) to be printed 
according to specific format.

 General format:
 printf("string literal");

 A sequence of any number of characters 

surrounded by double quotation marks.

 printf("format string", variables);

 Format string is a combination of text, conversion 

specifier and escape sequence.
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The printf function cont…

 Example:

 printf(“Thank you\n”);

 printf (“Total sum is: %d\n”, sum);

 %d is a placeholder (conversion specifier)

 marks the display position for a type integer variable

 Common Conversion Identifier used in printf function.

 \n is an escape sequence

 moves the cursor to the new line
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printf

int %d

float %f

double %f

char %c

string %s

Total sum is: 50

Press any key to continue

Thank you

Press any key to continue

Assuming that the 

value of sum is 50
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Escape Sequence
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Escape Sequence Effect 
\a Beep sound 
\b Backspace 

\f Formfeed (for printing) 
\n New line 
\r Carriage return 
\t Tab 

\v Vertical tab 
\\ Backslash 
\” “ sign 
\o Octal decimal 

\x Hexadecimal 
\O NULL 
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Placeholder / Conversion Specifier
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No Conversion 
Specifier 

Output Type Output Example 

1 %d Signed decimal integer 76 

2 %i Signed decimal integer 76 

3 %o Unsigned octal integer 134 

4 %u Unsigned decimal integer 76 

5 %x Unsigned hexadecimal (small letter) 9c 

6 %X Unsigned hexadecimal (capital letter) 9C 

7 %f Integer including decimal point 76.0000 

8 %e Signed floating point (using e notation) 7.6000e+01 

9 %E Signed floating point (using E notation) 7.6000E+01 

10 %g The shorter between %f and %e 76 

11 %G The shorter between %f and %E 76 

12 %c Character ‘7’ 

13 %s String ‘76' 
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The scanf function

 Read data from the standard input device (usually 
keyboard) and store it in a variable.

 General format:
 scanf(“format string”, &variable);

 Notice ampersand (&) operator :
 C address of operator

 it passes the address of the variable instead of the variable 
itself

 tells the scanf() where to find the variable to store the new 
value

 Format string is a combination of conversion specifier 
and escape sequence (if any).

18



Principles of Programming

The scanf function cont…

 Common Conversion Identifier used in printf and 

scanf functions.

 Example :

int age;

printf(“Enter your age:”);

scanf(“%d”, &age);
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printf scanf

int %d %d

float %f %f

double %f %lf

char %c %c

string %s %s
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The scanf function cont…

 If you want the user to enter more than one value, 
you serialise the inputs.

 Example:

float height, weight;

printf(“Please enter your height and weight:”);

scanf(“%f%f”, &height, &weight);
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getchar() and putchar()

 getchar() - read a character from standard 
input

 putchar() - write a character to standard 
output

 Example:
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#include <stdio.h>

int main(void)

{

char my_char;

printf(“Please type a character:”);

my_char = getchar();

printf(“\nYou have typed this character: ”);

putchar(my_char);

return (0);

}

Please type a character: h

You have typed this character: h

Press any key to continue
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getchar() and putchar() cont

 Alternatively, you can write the previous code 
using normal printf / scanf and %c placeholder.

 Example
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#include <stdio.h>

int main(void)

{

char my_char;

printf(“Please type a character: ”);

scanf(“%c”,&my_char);

printf(“\nYou have typed this character: %c”, my_char);

return(0);

}

Please type a character: h

You have typed this character: h

Press any key to continue
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Data Files

 Solutions to real problems often involve large 
amount of data that is not feasible to read 
from keyboard or print to the screen.

 To work with data file, we first have to define 
a file pointer to associate the file with

FILE *sensor;

 To open a file, fopen command is used.
sensor = fopen (“sensor.txt”, “r”);

 Options to open a data file:

 r – read data r+ - update

 w – write data w+ - update, overwrite

 a – append data a+ - update by appending

23



Principles of Programming

Data files

 To read data from the file, fscanf command is 
used

fscanf(sensor, “%lf %lf”, &t, &motion);

 To print data to the file, fprintf command is 
used

fprintf(waves, “%.2f %.2f %.2f \n”, w1, w2, sum);

 Close the file at the end of program using 
fclose command

fclose(sensor);

 Other commands that can be used: fputc, 
fgetc, fputs, fgets
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Few notes on C program…

 C is case-sensitive 
 Word, word, WorD, WORD, WOrD, worD, etc are all 

different variables / expressions 
Eg.  sum = 23 + 7

 What is the value of Sum after this addition ?

 Comments (remember 'Documentation'; Chapter 2)
 are inserted into the code using /* to start and */ to end a 

comment

 Some compiler support comments starting with ‘//’

 Provides supplementary information but is ignored by the 
preprocessor and compiler 
 /* This is a comment */

 // This program was written by Hanly Koffman
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C Token

 Tokens are a series of continuous 
characters that compilers treat as separate 
entities.

 Tokens can be classified into:
1. Reserved words (also known as keywords)

2. Identifiers

3. Constants

4. String Literal

5. Punctuators

6. Operators
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1. Reserved Words

 Keywords that identify language entities such 
as statements, data types, language 
attributes, etc.

 Have special meaning to the compiler, cannot 
be used as identifiers (variable, function 
name) in our program.

 Should be typed in lowercase.

 Example: const, double, int, main, void, printf, 
while, for, else (etc..)
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2. Identifiers

 Words used to represent certain program 
entities such as variables and function 
names.

 Example:

 int my_name; 

 my_name is an identifier used as a program 

variable

 void CalculateTotal(int value)

 CalculateTotal is an identifier used as a function 

name
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Rules for naming identifiers
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Rules Example
Can contain a mix of characters and numbers. 
However it cannot start with a number

H2o

First character must be a letter or underscore Number1; 
_area

Can be of mixed cases including underscore 
character

XsquAre

my_num

Cannot contain any arithmetic operators R*S+T

… or any other punctuation marks… #@x%!!

Cannot be a C keyword/reserved word struct; printf;

Cannot contain a space My height

… identifiers are case sensitive Tax != tax
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Variables

 Variable  a name associated with a 
memory cell whose value can change

 Variable Declaration: specifies the type of a 
variable

 Example: int num;

 Variable Definition: assigning a value to the 
declared variable

 Example: num = 5;
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Basic Data Types
 There are 4 basic data types : 

 int

 float

 double

 char

 int
 used to declare numeric program variables of 

integer type

 whole numbers, positive and negative

 keyword: int

int number;

number = 12;
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Basic Data Types cont…
 float

 fractional parts, positive and negative

 keyword: float

float height;

height = 1.72;

 double

 used to declare floating point variable of higher 
precision or higher range of numbers

 exponential numbers, positive and negative

 keyword: double

double valuebig;

valuebig = 12E-3;
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Basic Data Types cont…
 char

 equivalent to ‘letters’ in English language

 Example of characters:
 Numeric digits: 0 - 9

 Lowercase/uppercase letters: a - z and A - Z

 Space (blank)

 Special characters: , . ; ? “ / ( ) [ ] { } * & % ^ < > etc

 single character

 keyword: char
char my_letter;

my_letter = 'U';

 In addition, there are void, short, long, etc data types.

33

The declared character must be 

enclosed within a single quote!
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3. Constants

 Entities that appear in the program code as fixed 
values.

 Any attempt to modify a CONSTANT will result in error.
 4 types of constants:

 Integer constants
 Positive or negative whole numbers with no fractional part

 Example: 

const int MAX_NUM = 10;

const int MIN_NUM = -90;

 Floating-point constants (float or double)
 Positive or negative decimal numbers with an integer part, 

a decimal point and a fractional part

 Example:

const double VAL = 0.5877e2; (stands for 0.5877 x 102)
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Constants cont…

 Character constants

 A character enclosed in a single quotation mark

 Example:

 const char letter = ‘n’;

 const char number = ‘1’;

 printf("%c", ‘S’);

 Output would be: S
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Constant example – volume of a cone

#include <stdio.h>

int main(void)

{

const double pi = 3.142;

double height, radius, base, volume;

printf("Enter the height and radius of the cone:");

scanf("%lf %lf", &height, &radius);

base = pi * radius * radius;

volume = (1.0/3.0) * base * height;

printf("\nThe volume of a cone is %f ", volume);

return (0);

}
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#define
 You may also associate constant using #define preprocessor 

directive
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#include <stdio.h>

#define pi 3.142

int main(void)

{

double height, radius, base, volume;

printf("Enter the height and radius of the cone:");

scanf("%lf %lf", &height, &radius);

base = pi * radius * radius;

volume = (1.0/3.0) * base * height;

printf("\nThe volume of a cone is %f ", volume);

return (0);

}
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4. String Literal

 A sequence of any number of characters surrounded 
by double quotation marks “ ”. 

 Example of usage in C program:
printf("What a beautiful day.\n");

 To have double quotation marks as part of the 
sentence, precede the quote with backslash

printf("He shouted \"stop!\" to the thief\n");
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What a beautiful day.

Press any key to continue

He shouted "stop!" to the thief.

Press any key to continue
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5. Punctuators (separators)

 Symbols used to separate different parts of 
the C program.

 These punctuators include:

[ ] ( ) { } , ; “: * #

 Example:

39

#include <stdio.h>

int main (void)

{

int num = 10;

printf("%d",num);

return (0);

}
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6. Operators

 Tokens that result in some kind of 
computation or action when applied to 
variables or other elements in an expression.

 Example of operators:

* + = - / < >

 Usage example:

result = total1 + total2;
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Common Programming Errors

 Debugging  Process removing errors 
from a program

 Three (3) kinds of errors :

 Syntax Error 

 a violation of the C grammar rules, detected 

during program translation (compilation).

 statement cannot be translated and 

program cannot be executed
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Common Programming Errors 

cont… Run-time errors

 An attempt to perform an invalid operation, 

detected during program execution.

 Occurs when the program directs the 

computer to perform an illegal operation, 

such as dividing a number by zero.

 The computer will stop executing the 

program, and displays a diagnostic 

message indicates the line where the error 

was detected

42



Principles of Programming

Common Programming Errors 

cont… Logic Error/Design Error
 An error caused by following an incorrect algorithm

 Very difficult to detect - it does not cause run-time 
error and does not display message errors.

 The only sign of logic error – incorrect program 
output

 Can be detected by testing the program thoroughly, 
comparing its output to calculated results

 To prevent – carefully desk checking the algorithm 
and written program before you actually type it
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Summary

 In this chapter, you have learned the following items:

 environment of C language and C programming

 C language elements

 Preprocessor directives, curly braces, main (), semicolon, 

comments, double quotes

 4 basics data type and brief explanation on variable

 6 tokens : reserved word, identifier, constant, string 

literal, punctuators / separators and operators.

 printf, scanf, getchar and putchar

 Usage of modifiers : placeholder & escape sequence

 Common programming errors : syntax error, run-time 

error and logic error
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