
Principles of Programming

Chapter 3

Fundamental of C Programming
Language

and

Basic Input/Output Function

1S1 2017/18

Principles of Programming

Chapter 3: Fundamental of C and Input/Output

 In this chapter you will learn about:

 C Development Environment

 C Program Structure

 Basic Data Types

 Input/Output function

 Common Programming Error

2

Principles of Programming

3

Entering, translating, and running a High-Level Language
Program

Principles of Programming

C Program Structure

 An example of simple program in C

#include <stdio.h>

int main(void)

{

printf("I love programming\n");

printf("You will love it too once ");

printf("you know the trick\n");

return(0);

}

4

Principles of Programming

The output

 The previous program will produce the following
output on your screen

I love programming

You will love it too once you know the trick

5

Principles of Programming

Preprocessor directives

 A C program line begins with # provides an

instruction to the C preprocessor

 It is executed before the actual compilation is
done.

 Two most common directives :

 #include

 #define

 In our example (#include<stdio.h>) identifies
the header file for standard input and output
needed by the printf().

6

Principles of Programming

Function main

 Identify the start of the program

 Every C program has a main ()

 'main' is a C keyword. We must not use it
for any other variable.

 Using Visual Studio 2005, C program
skeleton looks like this:

7

int main(void)

{

return (0);
}

Principles of Programming

The curly braces { }

 Identify a segment / body of a program
 The start and end of a function

 The start and end of the selection or repetition
block.

 Since the opening brace indicates the start of
a segment with the closing brace indicating
the end of a segment, there must be just as
many opening braces as closing braces
(this is a common mistake of beginners)

8

Principles of Programming

Statement
 A specification of an action to be taken by the

computer as the program executes.

 Each statement in C needs to be terminated with
semicolon (;)

 Example:
#include <stdio.h>

int main(void)

{

printf("I" love programming\n");

printf("You will love it too once ");

printf("you know the trick\n");

return (0);

}

9

statement

statement

statement

Principles of Programming

Statement cont…

 Statement has two parts :
 Declaration

 The part of the program that tells the compiler the
names of memory cells in a program

 Executable statements

 Program lines that are converted to machine
language instructions and executed by the
computer

10

Principles of Programming

C program skeleton

 In short, the basic skeleton of a C program
looks like this:

#include <stdio.h>

int main(void)

{

statement(s);

return(0);

}

11

Preprocessor directives

Function main

Start of segment

End of segment

Principles of Programming

Input/Output Operations

 Input operation

 an instruction that copies data from an input

device into memory

 Output operation

 an instruction that displays information stored in

memory to the output devices (such as the monitor

screen)

12

Principles of Programming

Input/Output Functions

 A C function that performs an input or output
operation

 A few functions that are pre-defined in the
header file <stdio.h> such as :

 printf()

 scanf()

 getchar() & putchar()

13

Principles of Programming

The printf function

 Used to send data to the standard output
(usually the monitor) to be printed
according to specific format.

 General format:
 printf("string literal");

 A sequence of any number of characters

surrounded by double quotation marks.

 printf("format string", variables);

 Format string is a combination of text, conversion

specifier and escape sequence.

14

Principles of Programming

The printf function cont…

 Example:

 printf(“Thank you\n”);

 printf (“Total sum is: %d\n”, sum);

 %d is a placeholder (conversion specifier)

 marks the display position for a type integer variable

 Common Conversion Identifier used in printf function.

 \n is an escape sequence

 moves the cursor to the new line

15

printf

int %d

float %f

double %f

char %c

string %s

Total sum is: 50

Press any key to continue

Thank you

Press any key to continue

Assuming that the

value of sum is 50

Principles of Programming

Escape Sequence

16

Escape Sequence Effect
\a Beep sound
\b Backspace

\f Formfeed (for printing)
\n New line
\r Carriage return
\t Tab

\v Vertical tab
\\ Backslash
\” “ sign
\o Octal decimal

\x Hexadecimal
\O NULL

Principles of Programming

Placeholder / Conversion Specifier

17

No Conversion
Specifier

Output Type Output Example

1 %d Signed decimal integer 76

2 %i Signed decimal integer 76

3 %o Unsigned octal integer 134

4 %u Unsigned decimal integer 76

5 %x Unsigned hexadecimal (small letter) 9c

6 %X Unsigned hexadecimal (capital letter) 9C

7 %f Integer including decimal point 76.0000

8 %e Signed floating point (using e notation) 7.6000e+01

9 %E Signed floating point (using E notation) 7.6000E+01

10 %g The shorter between %f and %e 76

11 %G The shorter between %f and %E 76

12 %c Character ‘7’

13 %s String ‘76'

Principles of Programming

The scanf function

 Read data from the standard input device (usually
keyboard) and store it in a variable.

 General format:
 scanf(“format string”, &variable);

 Notice ampersand (&) operator :
 C address of operator

 it passes the address of the variable instead of the variable
itself

 tells the scanf() where to find the variable to store the new
value

 Format string is a combination of conversion specifier
and escape sequence (if any).

18

Principles of Programming

The scanf function cont…

 Common Conversion Identifier used in printf and

scanf functions.

 Example :

int age;

printf(“Enter your age:”);

scanf(“%d”, &age);

19

printf scanf

int %d %d

float %f %f

double %f %lf

char %c %c

string %s %s

Principles of Programming

The scanf function cont…

 If you want the user to enter more than one value,
you serialise the inputs.

 Example:

float height, weight;

printf(“Please enter your height and weight:”);

scanf(“%f%f”, &height, &weight);

20

Principles of Programming

getchar() and putchar()

 getchar() - read a character from standard
input

 putchar() - write a character to standard
output

 Example:

21

#include <stdio.h>

int main(void)

{

char my_char;

printf(“Please type a character:”);

my_char = getchar();

printf(“\nYou have typed this character: ”);

putchar(my_char);

return (0);

}

Please type a character: h

You have typed this character: h

Press any key to continue

Principles of Programming

getchar() and putchar() cont

 Alternatively, you can write the previous code
using normal printf / scanf and %c placeholder.

 Example

22

#include <stdio.h>

int main(void)

{

char my_char;

printf(“Please type a character: ”);

scanf(“%c”,&my_char);

printf(“\nYou have typed this character: %c”, my_char);

return(0);

}

Please type a character: h

You have typed this character: h

Press any key to continue

Principles of Programming

Data Files

 Solutions to real problems often involve large
amount of data that is not feasible to read
from keyboard or print to the screen.

 To work with data file, we first have to define
a file pointer to associate the file with

FILE *sensor;

 To open a file, fopen command is used.
sensor = fopen (“sensor.txt”, “r”);

 Options to open a data file:

 r – read data r+ - update

 w – write data w+ - update, overwrite

 a – append data a+ - update by appending

23

Principles of Programming

Data files

 To read data from the file, fscanf command is
used

fscanf(sensor, “%lf %lf”, &t, &motion);

 To print data to the file, fprintf command is
used

fprintf(waves, “%.2f %.2f %.2f \n”, w1, w2, sum);

 Close the file at the end of program using
fclose command

fclose(sensor);

 Other commands that can be used: fputc,
fgetc, fputs, fgets

24

Principles of Programming

Few notes on C program…

 C is case-sensitive
 Word, word, WorD, WORD, WOrD, worD, etc are all

different variables / expressions
Eg. sum = 23 + 7

 What is the value of Sum after this addition ?

 Comments (remember 'Documentation'; Chapter 2)
 are inserted into the code using /* to start and */ to end a

comment

 Some compiler support comments starting with ‘//’

 Provides supplementary information but is ignored by the
preprocessor and compiler
 /* This is a comment */

 // This program was written by Hanly Koffman

25

Principles of Programming

C Token

 Tokens are a series of continuous
characters that compilers treat as separate
entities.

 Tokens can be classified into:
1. Reserved words (also known as keywords)

2. Identifiers

3. Constants

4. String Literal

5. Punctuators

6. Operators

26

Principles of Programming

1. Reserved Words

 Keywords that identify language entities such
as statements, data types, language
attributes, etc.

 Have special meaning to the compiler, cannot
be used as identifiers (variable, function
name) in our program.

 Should be typed in lowercase.

 Example: const, double, int, main, void, printf,
while, for, else (etc..)

27

Principles of Programming

2. Identifiers

 Words used to represent certain program
entities such as variables and function
names.

 Example:

 int my_name;

 my_name is an identifier used as a program

variable

 void CalculateTotal(int value)

 CalculateTotal is an identifier used as a function

name

28

Principles of Programming

Rules for naming identifiers

29

Rules Example
Can contain a mix of characters and numbers.
However it cannot start with a number

H2o

First character must be a letter or underscore Number1;
_area

Can be of mixed cases including underscore
character

XsquAre

my_num

Cannot contain any arithmetic operators R*S+T

… or any other punctuation marks… #@x%!!

Cannot be a C keyword/reserved word struct; printf;

Cannot contain a space My height

… identifiers are case sensitive Tax != tax

Principles of Programming

Variables

 Variable  a name associated with a
memory cell whose value can change

 Variable Declaration: specifies the type of a
variable

 Example: int num;

 Variable Definition: assigning a value to the
declared variable

 Example: num = 5;

30

Principles of Programming

Basic Data Types
 There are 4 basic data types :

 int

 float

 double

 char

 int
 used to declare numeric program variables of

integer type

 whole numbers, positive and negative

 keyword: int

int number;

number = 12;

31

Principles of Programming

Basic Data Types cont…
 float

 fractional parts, positive and negative

 keyword: float

float height;

height = 1.72;

 double

 used to declare floating point variable of higher
precision or higher range of numbers

 exponential numbers, positive and negative

 keyword: double

double valuebig;

valuebig = 12E-3;

32

Principles of Programming

Basic Data Types cont…
 char

 equivalent to ‘letters’ in English language

 Example of characters:
 Numeric digits: 0 - 9

 Lowercase/uppercase letters: a - z and A - Z

 Space (blank)

 Special characters: , . ; ? “ / () [] { } * & % ^ < > etc

 single character

 keyword: char
char my_letter;

my_letter = 'U';

 In addition, there are void, short, long, etc data types.

33

The declared character must be

enclosed within a single quote!

Principles of Programming

3. Constants

 Entities that appear in the program code as fixed
values.

 Any attempt to modify a CONSTANT will result in error.
 4 types of constants:

 Integer constants
 Positive or negative whole numbers with no fractional part

 Example:

const int MAX_NUM = 10;

const int MIN_NUM = -90;

 Floating-point constants (float or double)
 Positive or negative decimal numbers with an integer part,

a decimal point and a fractional part

 Example:

const double VAL = 0.5877e2; (stands for 0.5877 x 102)

34

Principles of Programming

Constants cont…

 Character constants

 A character enclosed in a single quotation mark

 Example:

 const char letter = ‘n’;

 const char number = ‘1’;

 printf("%c", ‘S’);

 Output would be: S

35

Principles of Programming

Constant example – volume of a cone

#include <stdio.h>

int main(void)

{

const double pi = 3.142;

double height, radius, base, volume;

printf("Enter the height and radius of the cone:");

scanf("%lf %lf", &height, &radius);

base = pi * radius * radius;

volume = (1.0/3.0) * base * height;

printf("\nThe volume of a cone is %f ", volume);

return (0);

}

36

Principles of Programming

#define
 You may also associate constant using #define preprocessor

directive

37

#include <stdio.h>

#define pi 3.142

int main(void)

{

double height, radius, base, volume;

printf("Enter the height and radius of the cone:");

scanf("%lf %lf", &height, &radius);

base = pi * radius * radius;

volume = (1.0/3.0) * base * height;

printf("\nThe volume of a cone is %f ", volume);

return (0);

}

Principles of Programming

4. String Literal

 A sequence of any number of characters surrounded
by double quotation marks “ ”.

 Example of usage in C program:
printf("What a beautiful day.\n");

 To have double quotation marks as part of the
sentence, precede the quote with backslash

printf("He shouted \"stop!\" to the thief\n");

38

What a beautiful day.

Press any key to continue

He shouted "stop!" to the thief.

Press any key to continue

Principles of Programming

5. Punctuators (separators)

 Symbols used to separate different parts of
the C program.

 These punctuators include:

[] () { } , ; “: * #

 Example:

39

#include <stdio.h>

int main (void)

{

int num = 10;

printf("%d",num);

return (0);

}

Principles of Programming

6. Operators

 Tokens that result in some kind of
computation or action when applied to
variables or other elements in an expression.

 Example of operators:

* + = - / < >

 Usage example:

result = total1 + total2;

40

Principles of Programming

Common Programming Errors

 Debugging  Process removing errors
from a program

 Three (3) kinds of errors :

 Syntax Error

 a violation of the C grammar rules, detected

during program translation (compilation).

 statement cannot be translated and

program cannot be executed

41

Principles of Programming

Common Programming Errors

cont… Run-time errors

 An attempt to perform an invalid operation,

detected during program execution.

 Occurs when the program directs the

computer to perform an illegal operation,

such as dividing a number by zero.

 The computer will stop executing the

program, and displays a diagnostic

message indicates the line where the error

was detected

42

Principles of Programming

Common Programming Errors

cont… Logic Error/Design Error
 An error caused by following an incorrect algorithm

 Very difficult to detect - it does not cause run-time
error and does not display message errors.

 The only sign of logic error – incorrect program
output

 Can be detected by testing the program thoroughly,
comparing its output to calculated results

 To prevent – carefully desk checking the algorithm
and written program before you actually type it

43

Principles of Programming

Summary

 In this chapter, you have learned the following items:

 environment of C language and C programming

 C language elements

 Preprocessor directives, curly braces, main (), semicolon,

comments, double quotes

 4 basics data type and brief explanation on variable

 6 tokens : reserved word, identifier, constant, string

literal, punctuators / separators and operators.

 printf, scanf, getchar and putchar

 Usage of modifiers : placeholder & escape sequence

 Common programming errors : syntax error, run-time

error and logic error

44

