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Chapter 4: Basic C Operators

 In this chapter, you will learn about:

 Arithmetic operators

 Unary operators

 Binary operators

 Assignment operators

 Equalities and relational operators

 Logical operators

 Conditional operator
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Arithmetic Operators 

 There are 2 types of arithmetic operators 
in C: 

 unary operators

 operators that require only one operand.

 binary operators.

 operators that require two operands.
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Numeric Data Types
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Data Type Limits
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Unary Operator
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C operation Operator Example Explanation 

Positive + a = +3

Negative - b = -4

Increment ++ i++ Equivalent to i = i + 1

Decrement - - i - - Equivalent to i = i - 1
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PRE / POST Increment

 It is also possible to use ++i and --i instead of 
i++ and i--

 However, the two forms have a slightly yet 
important difference.

 Consider this example:
int a = 9;

printf(“%d\n”, a++);

printf(“%d”, a);

 The output would be:

9 

10
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PRE / POST Increment cont…

 But if we have:

int a = 9;

printf(“%d\n”, ++a);

printf(“%d”, a);

 The output would be:

10

10

 a++ would return the current value of a and 
then increment the value of a

 ++a on the other hand increment the value of 
a before returning the value
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The following table illustrates the difference between the prefix and postfix modes of the increment 

and decrement operator.
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int R = 10, count=10;

++ Or --
Statement

Equivalent 
Statements

R Count

R = count++;

R = count;

count = count + 1 10 11

R = ++count;

count = count + 1;

R = count;
11 11

R = count --;

R = count;

count = count – 1; 10 9

R = --count;

Count = count – 1;

R = count; 9 9

Assuming we have the following variables declaration.
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Binary Operators

 The division of variables of type integer will always 
produce a variable of type integer as the result.

 You could only use modulus (%) operation on 
integer variables.
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C operation Operator Example

Addition + b = a + 3

Subtraction - b = a - 4

Multiplication * b = a * 3

Division / b = a / c

Modulus % b = a % c
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 The division of variables of type integer will 
always produce a variable of type integer as 
the result.

 Example

int a = 7, b;

b = a/2;

printf(“%d\n”, b);

10

3

Press any key to continue

Since b is declared as 

an integer, the result of 

a/2 is 3, not 3.5
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 You could only use modulus (%) operation on 
integer variables/integer division.

 Example

int a = 7, b, c;

b = a%2;

c = a/2;

printf(“b = %d\n”, b);

printf(“c = %d\n”, c);
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b = 1

c = 3

Press any key to continue

Modulus will result in 

the remainder of a/2.

72

3

6

1

-

a/2

a%2

integral

remainder
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Numeric Conversion
 If a value is assigned to a variable that has a 

different data type, a conversion will occur 
during execution.

e.g. int a;

....

a = 12.8;

 Conversion from low order to high order is 
safe, but not the other way round.

High long double
double
float
long integer
integer

Low short integer
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Overflow and Underflow
 Occurs when result of an arithmetic operation 

exceeds (either too large or too small) 
allowable range.

 Overflow example:
x = 2.5e30;
y = 1.0e30
z = x*y

 Underflow example:
x = 2.5e-30;
y = 1.0e30
z = x/y
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Assignment Operators

 Assignment operators are used to combine the 
'=' operator with one of the binary arithmetic 
operators

 In the following example, all operations starting 
from c = 9
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Operator Example
Equivalent 
Statement

Results 

+= c += 7 c = c + 7 c = 16

-= c -= 8 c = c – 8 c = 1

*= c *= 10 c = c * 10 c = 90

/= c /= 5 c = c / 5 c = 1

%= c %= 5 c = c % 5 c = 4
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Precedence Rules

 Precedence rules come into play when there is a mixed 
of arithmetic operators in one statement. For example: 
x = 3 * a - ++b%3;

 The rules specify which of the operators will be 
evaluated first.

Precedence Operator Associativity 
Level

1 (highest) () left to right

2 unary right to left

3 *  /   %                    left to right

4 +  - left to right

5 (lowest) =  +=   -=  *=  /=  %=    right to left
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Precedence Rules cont…

 For example: x = 3 * a - ++b % 3;

how would this statement be evaluated? 
What is the value for X, given the following 
values:  a = 2, b = 4?
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x = 3 * a - ++b % 3;
x = 3 * a - 5 % 3;
x = 3 * a - 5  % 3;
x =    6   - 5  % 3;
x =    6   - 2
x =    4
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 If we intend to have the statement 

x = 3 * a - ++b % 3; 

evaluated differently from the way specified 
by the precedence rules, we need to specify it 
using parentheses ( )

 Consider having the following statement:

x = 3 * ((a - ++b)%3);

 In this case, the expression inside a 
parentheses will be evaluated first.

 The inner parentheses will be evaluated 
earlier compared to the outer parentheses.
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 x = 3 * ((a - ++b)%3);

how would this statement be evaluated? 
What is the value for X, given the following 
values:  a = 2, b = 4?
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x = 3 * ((a - ++b)%3);

x = 3 * ((a - 5)%3);x = 3 * ((a - 5)%3);
x = 3 * ((-3)%3);

x = 3 * 0;
x = 0;
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 Given the following expression, what will be 
the value of x, a and b once the expression 
be evaluated? Given the following values:     
a = 2, b = 4?
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x = 3 * ++a – b--%3;
x = 3 * ++a – b--%3;

a b2 4

x = 3 * 3 – b--%3; a b3 4

x = 3 * 3 – b--%3;x =    9   – b--%3;

x =    9 – b--%3;x =    9 – 1;

x =    8; b = b -1;
b = 3; b 3a 3
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Mathematical Functions

 Engineering problem solving usually requires 
the use of formula beyond addition, 
subtraction, multiplication and division.

 Many expressions require the use of 
exponentiation, logarithms, exponentials and 
trigonometric functions.

 Use the following preprocessor directive to 
use the elementary and trigonometric math 
functions in C.

#include <math.h>

 Available functions include fabs(x), sqrt(x), 
pow(x,y), ceil(x), floor(x), exp(x), log(x) and 
log10(x), sin(x), cos(x) and tan(x).
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Equality and Relational Operators

 Equality Operators:

Operator Example Meaning

== x == y x is equal to y

!= x != y x is not equal to y

 Relational Operators:
Operator Example Meaning

> x > y x is greater than y

< x < y x is less than y

>= x >= y x is greater than or equal to y

<= x <= y x is less than or equal to y
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Logical Operators

 Logical operators are useful when we want to 
test multiple conditions.

 There are 3 types of logical operators and they 
work the same way as the boolean AND, OR and 
NOT operators.

 && - Logical AND

 All the conditions must be true for the whole 
expression to be true.

 Example: if (a == 10 && b == 9 && d == 1)

means that the if statement is only true when a == 
10 and b == 9 and d == 1.

22



Principles of 

Programming

Logical Operators cont…

 || - Logical OR 
 The truth of one condition is enough to make the 

whole expression true.

 Example: if (a == 10 || b == 9 || d == 1)

means the if statement is true when either one of a, b
or d has the right value.

 ! - Logical NOT (also called logical negation)
 Reverse the meaning of a condition

 Example: if (!(points > 90))

means if points not bigger than 90.
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Conditional Operator

 The conditional operator (?:) is used to 
simplify an if/else statement.

 Syntax: 
Condition ? Expression1 : Expression2

 The statement above is equivalent to:

if (Condition)

Expression1

else

Expression2
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Conditional Operator cont…

 Example 1: 

if/else statement:

if (total > 60) 

grade = ‘P’

else

grade = ‘F’;

conditional statement:

(total > 60) ? grade = ‘P’: grade = ‘F’;

OR

grade =( total > 60) ? ‘P’: ‘F’;
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Conditional Operator cont…

 Example 2:

if/else statement:

if (total > 60)

printf(“Passed!!\n”);

else

printf(“Failed!!\n”);

Conditional Statement:

printf(“%s!!\n”, total > 60? “Passed”: “Failed”);
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Practice 1

 Write a program to compute the area of a 
rectangle with sides a and b.  The values of a
and b are entered from standard input.

 Write a program to compute the radius of a 
circle having the same area as that of a 
rhombus with diagonals d1 and d2.  The 
values of d1 and d2 are entered from standard 
input.
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Practice 2

 Write the program for height estimation 
problem solved in Chapter 2 earlier.
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SUMMARY

 This chapter exposed you the operators used 
in C
 Arithmetic operators

 Assignment operators

 Equalities and relational operators

 Logical operators

 Conditional operator

 Precedence levels come into play when there 
is a mixed of arithmetic operators in one 
statement.

 Pre/post fix - effects the result of statement
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