
Principles of

Programming

Chapter 4: Basic C Operators

 In this chapter, you will learn about:

 Arithmetic operators

 Unary operators

 Binary operators

 Assignment operators

 Equalities and relational operators

 Logical operators

 Conditional operator

1

Principles of

Programming

Arithmetic Operators

 There are 2 types of arithmetic operators
in C:

 unary operators

 operators that require only one operand.

 binary operators.

 operators that require two operands.

2

Principles of

Programming

Numeric Data Types

3

Principles of

Programming

Data Type Limits

4

Principles of

Programming

Unary Operator

5

C operation Operator Example Explanation

Positive + a = +3

Negative - b = -4

Increment ++ i++ Equivalent to i = i + 1

Decrement - - i - - Equivalent to i = i - 1

Principles of

Programming

PRE / POST Increment

 It is also possible to use ++i and --i instead of
i++ and i--

 However, the two forms have a slightly yet
important difference.

 Consider this example:
int a = 9;

printf(“%d\n”, a++);

printf(“%d”, a);

 The output would be:

9

10

6

Principles of

Programming

PRE / POST Increment cont…

 But if we have:

int a = 9;

printf(“%d\n”, ++a);

printf(“%d”, a);

 The output would be:

10

10

 a++ would return the current value of a and
then increment the value of a

 ++a on the other hand increment the value of
a before returning the value

7

Principles of

Programming

The following table illustrates the difference between the prefix and postfix modes of the increment

and decrement operator.

8

int R = 10, count=10;

++ Or --
Statement

Equivalent
Statements

R Count

R = count++;

R = count;

count = count + 1 10 11

R = ++count;

count = count + 1;

R = count;
11 11

R = count --;

R = count;

count = count – 1; 10 9

R = --count;

Count = count – 1;

R = count; 9 9

Assuming we have the following variables declaration.

Principles of

Programming

Binary Operators

 The division of variables of type integer will always
produce a variable of type integer as the result.

 You could only use modulus (%) operation on
integer variables.

9

C operation Operator Example

Addition + b = a + 3

Subtraction - b = a - 4

Multiplication * b = a * 3

Division / b = a / c

Modulus % b = a % c

Principles of

Programming

 The division of variables of type integer will
always produce a variable of type integer as
the result.

 Example

int a = 7, b;

b = a/2;

printf(“%d\n”, b);

10

3

Press any key to continue

Since b is declared as

an integer, the result of

a/2 is 3, not 3.5

Principles of

Programming

 You could only use modulus (%) operation on
integer variables/integer division.

 Example

int a = 7, b, c;

b = a%2;

c = a/2;

printf(“b = %d\n”, b);

printf(“c = %d\n”, c);

11

b = 1

c = 3

Press any key to continue

Modulus will result in

the remainder of a/2.

72

3

6

1

-

a/2

a%2

integral

remainder

Principles of

Programming

Numeric Conversion
 If a value is assigned to a variable that has a

different data type, a conversion will occur
during execution.

e.g. int a;

....

a = 12.8;

 Conversion from low order to high order is
safe, but not the other way round.

High long double
double
float
long integer
integer

Low short integer

12

Principles of

Programming

Overflow and Underflow
 Occurs when result of an arithmetic operation

exceeds (either too large or too small)
allowable range.

 Overflow example:
x = 2.5e30;
y = 1.0e30
z = x*y

 Underflow example:
x = 2.5e-30;
y = 1.0e30
z = x/y

13

Principles of

Programming

Assignment Operators

 Assignment operators are used to combine the
'=' operator with one of the binary arithmetic
operators

 In the following example, all operations starting
from c = 9

14

Operator Example
Equivalent
Statement

Results

+= c += 7 c = c + 7 c = 16

-= c -= 8 c = c – 8 c = 1

*= c *= 10 c = c * 10 c = 90

/= c /= 5 c = c / 5 c = 1

%= c %= 5 c = c % 5 c = 4

Principles of

Programming

Precedence Rules

 Precedence rules come into play when there is a mixed
of arithmetic operators in one statement. For example:
x = 3 * a - ++b%3;

 The rules specify which of the operators will be
evaluated first.

Precedence Operator Associativity
Level

1 (highest) () left to right

2 unary right to left

3 * / % left to right

4 + - left to right

5 (lowest) = += -= *= /= %= right to left

15

Principles of

Programming

Precedence Rules cont…

 For example: x = 3 * a - ++b % 3;

how would this statement be evaluated?
What is the value for X, given the following
values: a = 2, b = 4?

16

x = 3 * a - ++b % 3;
x = 3 * a - 5 % 3;
x = 3 * a - 5 % 3;
x = 6 - 5 % 3;
x = 6 - 2
x = 4

Principles of

Programming

 If we intend to have the statement

x = 3 * a - ++b % 3;

evaluated differently from the way specified
by the precedence rules, we need to specify it
using parentheses ()

 Consider having the following statement:

x = 3 * ((a - ++b)%3);

 In this case, the expression inside a
parentheses will be evaluated first.

 The inner parentheses will be evaluated
earlier compared to the outer parentheses.

17

Principles of

Programming

 x = 3 * ((a - ++b)%3);

how would this statement be evaluated?
What is the value for X, given the following
values: a = 2, b = 4?

18

x = 3 * ((a - ++b)%3);

x = 3 * ((a - 5)%3);x = 3 * ((a - 5)%3);
x = 3 * ((-3)%3);

x = 3 * 0;
x = 0;

Principles of

Programming

 Given the following expression, what will be
the value of x, a and b once the expression
be evaluated? Given the following values:
a = 2, b = 4?

19

x = 3 * ++a – b--%3;
x = 3 * ++a – b--%3;

a b2 4

x = 3 * 3 – b--%3; a b3 4

x = 3 * 3 – b--%3;x = 9 – b--%3;

x = 9 – b--%3;x = 9 – 1;

x = 8; b = b -1;
b = 3; b 3a 3

Principles of

Programming

Mathematical Functions

 Engineering problem solving usually requires
the use of formula beyond addition,
subtraction, multiplication and division.

 Many expressions require the use of
exponentiation, logarithms, exponentials and
trigonometric functions.

 Use the following preprocessor directive to
use the elementary and trigonometric math
functions in C.

#include <math.h>

 Available functions include fabs(x), sqrt(x),
pow(x,y), ceil(x), floor(x), exp(x), log(x) and
log10(x), sin(x), cos(x) and tan(x).

20

Principles of

Programming

Equality and Relational Operators

 Equality Operators:

Operator Example Meaning

== x == y x is equal to y

!= x != y x is not equal to y

 Relational Operators:
Operator Example Meaning

> x > y x is greater than y

< x < y x is less than y

>= x >= y x is greater than or equal to y

<= x <= y x is less than or equal to y

21

Principles of

Programming

Logical Operators

 Logical operators are useful when we want to
test multiple conditions.

 There are 3 types of logical operators and they
work the same way as the boolean AND, OR and
NOT operators.

 && - Logical AND

 All the conditions must be true for the whole
expression to be true.

 Example: if (a == 10 && b == 9 && d == 1)

means that the if statement is only true when a ==
10 and b == 9 and d == 1.

22

Principles of

Programming

Logical Operators cont…

 || - Logical OR
 The truth of one condition is enough to make the

whole expression true.

 Example: if (a == 10 || b == 9 || d == 1)

means the if statement is true when either one of a, b
or d has the right value.

 ! - Logical NOT (also called logical negation)
 Reverse the meaning of a condition

 Example: if (!(points > 90))

means if points not bigger than 90.

23

Principles of

Programming

Conditional Operator

 The conditional operator (?:) is used to
simplify an if/else statement.

 Syntax:
Condition ? Expression1 : Expression2

 The statement above is equivalent to:

if (Condition)

Expression1

else

Expression2

24

Principles of

Programming

Conditional Operator cont…

 Example 1:

if/else statement:

if (total > 60)

grade = ‘P’

else

grade = ‘F’;

conditional statement:

(total > 60) ? grade = ‘P’: grade = ‘F’;

OR

grade =(total > 60) ? ‘P’: ‘F’;

25

Principles of

Programming

Conditional Operator cont…

 Example 2:

if/else statement:

if (total > 60)

printf(“Passed!!\n”);

else

printf(“Failed!!\n”);

Conditional Statement:

printf(“%s!!\n”, total > 60? “Passed”: “Failed”);

26

Principles of

Programming

Practice 1

 Write a program to compute the area of a
rectangle with sides a and b. The values of a
and b are entered from standard input.

 Write a program to compute the radius of a
circle having the same area as that of a
rhombus with diagonals d1 and d2. The
values of d1 and d2 are entered from standard
input.

27

Principles of

Programming

Practice 2

 Write the program for height estimation
problem solved in Chapter 2 earlier.

28

Principles of

Programming

SUMMARY

 This chapter exposed you the operators used
in C
 Arithmetic operators

 Assignment operators

 Equalities and relational operators

 Logical operators

 Conditional operator

 Precedence levels come into play when there
is a mixed of arithmetic operators in one
statement.

 Pre/post fix - effects the result of statement

29

