
Principles of Programming

Chapter 5: Control Structures

In this chapter you will learn about:
 Sequential structure
 Selection structure

 if

 if … else

 switch

 Repetition Structure
 while

 do… while

 for

 Continue and break statements

1S1 2017/18

Principles of Programming

Sequential Structure

 Statements are executed one by one until the end
of the program is reached.

2

statement 1

statement 2

…

statement n

begin

end

int main(void)

{

int count = 0;

printf(“count = %d\n”, count);

count++;

printf(“count = %d\n”, count);

count++;

printf(“count = %d\n”, count);

return(0);

}

count = 1

count = 2

count = 3

Press any key to continue

Principles of Programming

Sequential Structure

 Write a C program that asks the user to enter 3 integer numbers, and
then prints the entered numbers in reverse order.

#include <stdio.h>

int main(void)

{

int num1, num2, num3;

// reading the input

printf(“Enter the first number: ”);

scanf(“%d”,&num1);

printf(“Enter the second number: ”);

scanf(“%d”,&num2);

printf(“Enter the third number: ”);

scanf(“%d”,&num3);

/* printing the result to the screen */

printf(“The numbers in reverse order: %d %d %d \n”,num3,num2,num1);

return (0);

}

3

Enter the first number: 5

Enter the second number: 9

Enter the third number: 11

The numbers in reverse order: 11 9 5

Press any key to continue

Principles of Programming

 In selection structure, the program is executed based
upon the given condition.

 Only instructions that satisfy the given condition are
executed.

 There are 3 types of selection structure:
 if

 A single alternative

 if…else
 Two alternatives

 nested if..else
 Multiple alternatives

 switch
 Multiple alternatives

Selection Structure

4

Condition?

else-

statement(s)

then-

statement(s)

YesNo

Condition?

then-

statement(s)

YesNo
Condition?

else-

statement(s)

then-

statement(s)

Yes No

Condition?

then-

statement(s)

Yes No

Principles of Programming

Selection structure: if
 Syntax :

if (condition)

Statement;

 The statement is only executed if the condition is
satisfied.

 Example:

if (score >= 60)

printf(“Pass!!\n”);

 In the example above, the word “Pass!!” will only be
printed out if the value of score is larger than or equal to
60. If not, the word “Pass!!” will not be printed out and
the program will continue with the next statement.

5

A condition is an expression that

can return true or false (usually

involving the use of an operator).

Note that there is no semicolon (;) after

the if statement. If there is one, that means

the if statement and the printf() statement

are 2 different statements and they will

both get executed sequentially.

Principles of Programming

#include <stdio.h>

int main(void)

{

int score;

printf(“Enter the score: ”);

scanf(“%d”,&score);

if (score >= 60)

printf(“Pass\n”);

printf(“Bye\n”);

return(0);

}

6

Enter the score: 75

Pass

Bye

Press any key to continue

Enter the score: 20

Bye

Press any key to continue

Principles of Programming

Selection structure: if… else
 Syntax :

if (condition)

statement1;

else

statement2;

 If the condition is satisfied, statement1 will be executed.
Otherwise, statement2 will get executed.

 Example :
if (score >= 60)

printf(“Pass!!\n”);

else

printf(“Fail!!\n”);

 In the above example, the word “Pass!!” will be printed if
the value of score is bigger than 60 or equal to 60.
Otherwise the word ‘Fail!!” will be printed out.

7

Principles of Programming

#include <stdio.h>

int main(void)

{

int score;

printf(“Enter the score: ”);

scanf(“%d”,&score);

if (score >= 60)

printf(“Pass\n”);

else

printf(“Fail\n”);

printf(“Bye\n”);

return(0);

}

8

Enter the score: 75

Pass

Bye

Press any key to continue

Enter the score: 50

Fail

Bye

Press any key to continue

Principles of Programming

Plurality of Statements

 In the examples that we have seen so far, there is only
one statement to be executed after the if statement.

 If we want to execute more than one statement after the
condition is satisfied, we have to put curly braces { }
around those statements to tell the compiler that they are
a part of the if statement, making it a Compound
Statement

 Compound Statement - A group of statements that
executed sequentially which is usually grouped by { }

9

Principles of Programming

Plurality of Statements

int score;

printf(“Enter the score: ”);

scanf(“%d”,&score);

if (score >= 60)

{

printf(“You have done very well\n”);

printf(“I’ll give you a present\n”);

}

else

{

printf(“You have failed the course\n”);

printf(“Sorry no present for you\n”);

printf(“Go and study more”);

}

10

Enter the score: 75

You have done very well

I’ll give you a present

Press any key to continue

Enter the score: 25

You have failed the course

Sorry no present for you

Go and study more

Press any key to continue

Compound

statement

Compound

statement

Principles of Programming

What happen of you omit the { } for compound statement?

11

int score;

printf(“Enter the score: ”);

scanf(“%d”,&score);

if (score >= 60)

{

printf(“You have done very well\n”);

printf(“I’ll give you a present\n”);

}

else

printf(“You have failed the course\n”);

printf(“Sorry no present for you\n”);

printf(“Go and study more”);

Enter the score: 75

You have done very well

I’ll give you a present

Sorry no present for you

Go and study more

Press any key to continue

Principles of Programming

What happen of you omit the { } for compound statement?

12

int score;

printf(“Enter the score: ”);

scanf(“%d”,&score);

if (score >= 60)

printf(“You have done very well\n”);

printf(“I’ll give you a present\n”);

else

{

printf(“You have failed the course\n”);

printf(“Sorry no present for you\n”);

printf(“Go and study more”);

}

Principles of Programming

Nested if… else statements
 A nested if…else statement is an if…else statement with another

if…else statements inside it (multiple choice statement)

 Example :
if (score >= 90)

printf(“A\n”);

else if (score >= 80)

printf(“B\n”);

else if (score >= 70)

printf(“C\n”);

else if (score >= 60)

printf(“D\n”);

else

printf(“F\n”);

 The else if statement means that if the above condition is not
satisfied, then try checking this condition.If any one of the condition is
already satisfied, then ignore the rest of the available conditions

13

Principles of Programming

Nested if… else statements

 Can you re-write nested if..else statement using
multiple single if statements?

 It depends on the type of <condition> that we are
dealing with.

14

Principles of Programming

Can you re-write nested if..else statement using

multiple single if statements?

 Example 1:

if (score >= 90)

printf(“A\n”);

else if (score >= 80)

printf(“B\n”);

else if (score >= 70)

printf(“C\n”);

else if (score >= 60)

printf(“D\n”);

else

printf(“F\n”);

15

 Re-write using multiple single if

if (score >= 90)

printf(“A\n”);

if (score >= 80)

printf(“B\n”);

if (score >= 70)

printf(“C\n”);

if (score >= 60)

printf(“D\n”);

if (score < 60)

printf(“F\n”);

Enter the score: 85

B

Press any key to continue

Enter the score: 85

B

C

D

Press any key to continue

Why?

Principles of Programming

Can you re-write nested if..else statement using

multiple single if statements?

 Example 2:

if (number == 1)

printf(“One\n”);

else if (number == 2)

printf(“Two\n”);

else if (number == 3)

printf(“Three\n”);

else

printf(“Others\n”);

16

 Re-write using multiple single if

if (number == 1)

printf(“One\n”);

if (number == 2)

printf(“Two\n”);

if (number == 3)

printf(“Three\n”);

if (number < 1 && number > 3)

printf(“Others\n”);

Enter the score: 2

Two

Press any key to continue

Enter the score: 2

Two

Press any key to continue

Why?

Principles of Programming

Selection structure: switch
 A switch statement is used to choose one choice from

multiple cases and one default case.

 Syntax:
switch (variable)

{

case case1:

statement1;

break;

case case2:

statement2;

break;

…

default;

statement;

break;

}

17

The break statement is needed

so that once a case has been

executed, it will skip all the

other cases and go outside the

switch statement.

If the break statement is

omitted, the execution will be

carried out to the next

alternatives until the next break

statement is found.

Principles of Programming

switch - example

int number;

printf(“Enter a positive integer number: “);

scanf(“%d”,&number);

switch (number)

{

case 5:

printf(“Five!!\n”);

break;

case 9:

printf(“Nine!!\n”);

break;

case 13:

printf(“Thirteen!!\n”);

break;

default:

printf(“Others\n”);

}

18

This program reads a
number from the user and
print out the string
equivalent for 5, 9, 13.

If the value being keyed in
is other than 5, 9 or 13, the
default statement will be
executed where the
statement “Others” will be
printed out.

Principles of Programming

switch cont…
 The value for ‘case’ must be either in integer or character

datatype.

 Eg.1 switch (number) {
case 5 :

statement;

break; ….

 Eg.2 switch (color) {
case ‘R’ :

statement;

break;

 The order of the ‘case’ statement is unimportant

19

The value for case must be
either in integer or
character datatype

Principles of Programming

switch example
char grade;

printf(“Enter the grade you scored for this subject: “);

scanf(“%c”,&grade);

switch (grade)

{

case ‘a’:

case ‘A’:

printf(“Excellent!!\n”);

printf(“You brilliant..\n”);

break;

case ‘b’:

case ‘B’:

printf(“Job well done!!\n”);

printf(“You deserve it..\n”);

break;

case ‘c’:

case ‘C’:

printf(“Oh no.. Just an average!!\n”);

printf(“Try harder next time..\n”);

break;

default:

printf(“undefined grade\n”);

}

20

if (grade == ‘a’ || grade == ‘A’)

{

printf(“Excellent!!\n”);

printf(“You brilliant..\n”);

}

else if (grade == ‘b’ || grade == ‘B’)

{

printf(“Job well done!!\n”);

printf(“You deserve it..\n”);

}

else if (grade == ‘c’ || grade == ‘C’)

{

printf(“Oh no.. Just an average!!\n”);

printf(“Try harder next time..\n”);

}

else

printf(“undefined grade\n”);

Principles of Programming

Repetition Structure (Loop)

 Used to execute a number of statements from the
program more than one time without having to write the
statements multiple times.

 Two designs of loop :
 To execute a number of instructions from the program for a

finite, pre-determined number of time (Counter-controlled
loop) – recall the exercise from Topic 2.

 To execute a number of instructions from the program
indifinitely until the user tells it to stop or a special
condition is met (Sentinel-controlled loop)

21

Principles of Programming

 There are 3 types of loops in C:
 while

 do…while

 for

22

Condition?

Loop

Statement(s)

yes

no

Condition?

Loop

Statement(s)

yes

no

Principles of Programming

Repetition : while loop
 Syntax :

while (condition)

statement;

 As long as the condition is met (the condition expression
returns true), the statement inside the while loop will
always get executed.

 When the condition is no longer met (the condition
expression returns false), the program will continue on
with the next instruction (the one after the while loop).

 Example:

23

int total = 0;

while (total < 5)

{

printf(“Total = %d\n”, total);

total++;

}

Similar as in the if statement, the

condition is an expression that can

return true or false.

Principles of Programming

Repetition : while loop cont…

 In this example :
 (total < 5) is known as loop repetition condition

(counter-controlled)

 total is the loop counter variable

 In this case, this loop will keep on looping until the
counter variable is = 4. Once total = 5, the loop will
terminate

24

int total = 0;

while (total < 5)

{

printf(“Total = %d\n”, total);

total++;

}

Principles of Programming

Repetition : while loop cont…

 The printf() statement will get executed as long as
the variable total is less than 5. Since the variable
total is incremented each time the loop is
executed, the loop will stop after the 5th output.

25

int total = 0;

while (total < 5)

{

printf(“Total = %d\n”, total);

total++;

}

Total = 0

Total = 1

Total = 2

Total = 3

Total = 4

Press any key to continue

Principles of Programming

Example
 Write a program that will read 5 values from the

user and prints the sum of the values.
#include <stdio.h>

int main(void)

{

int number, count = 0, sum = 0;

while (number < 5)

{

printf(“Enter a number: ”);

scanf(“%d”,&number);

sum = sum + number;

number++;

}

printf(“Sum = %d\n”, sum);

return(0);

} 26

Enter a number: 6

Enter a number: 4

Enter a number: -9

Enter a number: 3

Enter a number: 22

Sum = 26

Press any key to continue

Principles of Programming

Infinite loop

 If somehow the program never goes out of the
loop, the program is said to be stuck in an infinite
loop.

 The infinite loop error happens because the
condition expression of the while loop always
return a true.

 If an infinite loop occurs, the program would
never terminate and the user would have to
terminate the program by force.

27

Principles of Programming

What will be the output of the following programs?

28

int total = 0;

while (total < 5)

{

printf(“Total = %d\n”, total);

}

int total = 0;

while (total < 5)

{

printf(“Total = %d\n”, total);

total--;

}

int total = 0;

while (total < 5)

{

printf(“Total = %d\n”, total + 1);

}

Principles of Programming

Repetition : do… while loop
 Syntax

do {

statement;

} while(condition);

 A do…while loop is pretty much the same as the while
loop except that the condition is checked after the first
execution of the statement has been made.

 When there is a do…while loop, the statement(s) inside it
will be executed once no matter what. Only after that the
condition will be checked to decide whether the loop
should be executed again or just continue with the rest of
the program.

29

Principles of Programming

do… while loop cont…
 Let us consider the following program:

int total = 10;

while (total < 10)

{

printf(“Total = %d\n”, total);

total++;

}

printf(“Bye..”);

 What does this program do?
The program will only print the word “Bye..”. The
statements inside the while loop will never be executed
since the condition is already not satisfied when it is
time for the while loop to get executed.

30

Principles of Programming

do… while loop cont…
 Now consider the following program:

int total = 10;

do {

printf(“Total = %d\n, total);

total++;

} while (total < 10)

printf(“Bye..”);

 Compared to the previous one, what will the output be?
The program will get an output:

Total = 10

Bye..

because the condition is not checked at the beginning of the
loop. Therefore the statements inside the loop get executed
once.

31

Principles of Programming

do… while loop cont…

 do.. while loop is very useful when it comes to data
validation.

 Say for example we want to write a program that will
read the score marks from the user, and print its
equivalent grade (recall example from the selection
section)

 Say that the score marks should be between 0 – 100.
If the user keys in value other than 0 – 100, our
program will need to do something.

 Option 1: We could tell the users that they have
entered a wrong input and terminate the program.

 Option 2: We could tell the users that they have
entered a wrong input and ask them to reenter the
input.

32

Principles of Programming

Option 1: default case for if..else
int score;

printf(“Enter the score: ”);

scanf(“%d”,&score);

if (score >= 90 && score <= 100)

printf(“A\n”);

else if (score >= 80 && score < 90)

printf(“B\n”);

else if (score >= 70 && score < 80)

printf(“C\n”);

else if (score >= 60 && score < 70)

printf(“D\n”);

else if (score >= 0 && score < 60

printf(“F\n”);

else

printf(“Sorry, input should only be between 0 – 100 \n”);

33

Principles of Programming

Option 2: do.. while (input validation)
int score;

do{

printf(“Enter the score: ”);

scanf(“%d”,&score);

if (score < 0 || score > 100)

printf(“Sorry, input must be between 0 – 100\n”);

}while (score < 0 || score > 100);

if (score >= 90 && score <= 100)

printf(“A\n”);

else if (score >= 80 && score < 90)

printf(“B\n”);

else if (score >= 70 && score < 80)

printf(“C\n”);

else if (score >= 60 && score < 70)

printf(“D\n”);

else

printf(“F\n”);

34

Enter the score: -9

Sorry, input must be between 0 – 100

Enter the score: 150

Sorry, input must be between 0 – 100

Enter the score: 89

B

Press any key to continue

Principles of Programming

while vs do..while for input validation

do{

printf(“Enter the score: ”);

scanf(“%d”, &score);

if (score < 0 || score > 100)

printf(“Sorry, input must be between 0 – 100\n”);

}while (score < 0 || score > 100);

35

printf(“Enter the score: ”);

scanf(“%d”, &score);

while (score < 0 || score > 100)

{

printf(“Sorry, input must be between 0 – 100\n”);

printf(“Enter the score: ”);

scanf(“%d”,&score);

}

do..while loop

while loop

Principles of Programming

Repetition : for loop

 Syntax :

for (expression1; expression2; expression3)

statement;

 Expression1: initialize the controlling variable

 Expression2: the loop condition

 Expression3: changes that would be done to the
controlling variable at the end of each loop.

 Note that each expression is separated by a
semicolon (;)

36

Principles of Programming

for loop - example

 Example:
int total;

for (total = 0; total < 5; total++)

{

printf(“Total = %d\n”, total);

}

37

Total = 0

Total = 1

Total = 2

Total = 3

Total = 4

Press any key to continue

Principles of Programming

for loop vs while loop
int total = 0;

while (total < 5)
{

printf(“Total = %d\n”, total);
total++;

}

38

int total;

for (total = 0; total < 5; total++)
{

printf(“Total = %d\n”, total);
}

Principles of Programming

for loop cont…
 Notice that the output is the same as the one for the

while loop example. In fact, the two examples are exactly
equivalent. Using a for loop is just another way of writing
a while loop that uses a controlling variable.

 It is also possible to omit one or more of the for loop
expressions. In such a case, we just put the semicolon
without the expression.

int total= 0;

for (; total < 5; total++)

{

printf(“Total = %d\n”, total);

}

39

Principles of Programming

Repetition Structure (Loop)

 Used to execute a number of statements from the
program more than one time without having to write the
statements multiple times.

 Two designs of loop :
 To execute a number of instructions from the program for a

finite, pre-determined number of time (Counter-controlled
loop) – recall the exercise from Topic 2.

 To execute a number of instructions from the program
indifinitely until the user tells it to stop or a special
condition is met (Sentinel-controlled loop)

40

Principles of Programming

Sentinel-controlled loop

 All this while you have seen what we call ‘counter
controlled loop’ method.

 Counter control loop is used when we know
beforehand how many iteration that the loop
should execute.

 There will be cases where we (as the
programmer) do not know how many times the
loop should be executed, because the decision is
up to the users.

 In this case, to terminate the loop, we need to
use ‘sentinel controlled loop’ method

41

Principles of Programming

Sentinel-controlled loop

 In order to exit from the loop, the user must
enter a unique data value, called a sentinel value.

 The sentinel value must be a value that could not
normally occur as data.

 The algorithm for sentinel-controlled loop:

read a value

while the value is not sentinel value

process the value

read the next value

end_while

42

Principles of Programming

Sentinel-controlled loop

 Write a program that will read n values from the
user and prints the sum of the values. The
program stops reading values from the users
when they enter ZERO.
 In this example, the program task is to read values

from the users and sum up then values.

 The sentinel value for this example is ZERO, since ZERO
is not part of the data value (anything + zero will not
cause any changes to the value)

43

Principles of Programming

Sentinel-controlled loop
#include <stdio.h>

int main(void)

{

int number, count = 0, sum = 0;

printf(“Enter a number [zero to end]: ”);

scanf(“%d”,&number);

while (number != 0)

{

sum = sum + number;

printf(“Enter a number [zero to end]: ”);

scanf(“%d”,&number);

}

printf(“Sum = %d\n”, sum);

return(0);

}

44

Enter a number [zero to end]: 3

Enter a number [zero to end]: -6

Enter a number [zero to end]: 10

Enter a number [zero to end]: 4

Enter a number [zero to end]: -7

Enter a number [zero to end]: 13

Enter a number [zero to end]: 24

Enter a number [zero to end]: 0

Sum = 41

Press any key to continue

Principles of Programming

continue and break statement
 Both of these statements are used to modify the program flow

when a selection structure or a repetition structure is used.
 The break statement is used to break out of selection or

repetition structure. For example:
for (a = 0; a < 5; a++)

{

if (a == 2)

break;

printf(“a = %d\n”, a);

}

 The output of this example would be:
a = 0

a = 1

 When a = 2, the program will break out of the for loop due to
the break statement. This will effectively terminate the loop. It
will not wait till the value of a reaches 5 before terminating the
loop.

45

Principles of Programming

continue and break statement
 The continue statement is used to ignore the rest of the

statements in the loop and continue with the next
iteration.

 Example:
for (a = 0; a < 5; a++)

{

if (a == 2)

continue;

printf(“a = %d\n”, a);

}

 Output:
a = 0

a = 1

a = 3

a = 4

 a = 2 is not printed out because the loop skips the printf()
function when the continue statement is encountered.

46

Principles of Programming

continue and break statement

 In a while and do…while structure, the loop condition
will be checked as soon as the continue statement is
encountered to determine whether the loop will be
continued .

 In a for loop, any modification to the controlling
variable will be done before the condition is checked.

47

Principles of Programming

SUMMARY
 In this chapter, you’ve learnt about 3 control structures in C

programming :
 Sequential
 Selection

 if..else
 nested if..else
 switch

 Repetition
 while
 do…while
 for

 Two designs of repetition :
 Counter-controlled
 Sentinel-controlled

 The use of continue and break statement

48

Principles of Programming

Exercise

 Write a program that reads positive integer
numbers using repetition control-structure until
the user terminates the program by entering
zero. Your program should determine and print
the smallest and largest of the supplied numbers.
Please include appropriate input validation in
your program.

49

