
Principles of Programming

Chapter 6: Arrays
 In this chapter, you will learn about

 Introduction to Array

 Array declaration

 Array initialization

 Assigning values to array elements

 Reading values from array elements

 Simple Searching

 Simple Sorting

 2 Dimensional arrays

 Working with matrices

1S1 2017/18

Principles of Programming

Introduction to Array

 In C, a group of items of the same type can be set up
using Array

 An array is a group of consecutive memory locations
related by the fact that they all have the same name
and the same type.

 The compiler must reserve storage (space) for each
element/item of a declared array.

 The size of an array is static (fixed) throughout
program execution.

 To refer to a particular location or element in the
array, we specify the name of the array and its index
(the position number of the particular element in the
array).

2

Principles of Programming

3

-10

99

-8

100

27

10

1976

-2020

1

Let say we have an array called a.

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

Name of the array

The position number within

the square brackets is formally

called a subscript. A subscript

can be an integer or an integer

expression. For example if

x = 1 and y = 2, then a[x+y]

is equal to a[3].

Notice that the position

starts from 0.

Principles of Programming

Array Declaration

 Array declaration is made by specifying the data type,
it’s name and the number of space (size) so that the
computer may reserve the appropriate amount of
memory.

 General syntax:
data_type array_name[size];

 Examples:
 int my_array[100];

 char name[20];

 double bigval[5*200];

 int a[27], b[10], c[76];

4

Principles of Programming

Array Initialization

 There are 2 ways to initialize an array: during compilation
and during execution.

 During compilation:
 int arr[] = {1, 2, 3, 4, 5};

 Unsized array : We can define how many elements that we
want since the array size is not given.

 int arr[3] = {90, 21, 22};

 We can define only 3 elements since the array size is already
given.

 int arr[5] = {2,4};

 Initialize the first two elements to the value of 2 and 4
respectively, while the other elements are initialized to zero.

 int arr[5] = {0};

 Initialize all array elements to zero.

5

Principles of Programming

Array Initialization cont…

 During execution:

 Using loop to initialize all elements to zero

int arr[3], index;

for (index = 0; index < 3; index++)

arr[index] = 0;

 Using loop and asking the user to specify the value
for each element.

int arr[3], index;

for (index = 0; index < 3; index++)

{

printf (“arr[%d]:”,index);

scanf(“%d”,&arr[index]);

}

6

Principles of Programming

Assigning value to array element

 We can assign a value to a specific array element by using
its index number.

 Example: let’s say we have an array that represents the
number of inhabitants in 5 apartment units.

int apartment[5]={3,2,6,4,5};

 The above initialization indicates that there are 3 people
living in apartment 0, 2 people living in apartment 1 and
so on.

 Let say that we have a new born in apartment 3, so we
need to change the number of inhabitants living in
apartment three.

apartment[3] = apartment[3] + 1;

 Now, we have the following values in our array:

7

3 2 6 5 5

[0] [1] [2] [3] [4]

apartment

Principles of Programming

Reading values from array elements

 We can read a value from a specific array element by referring to
the index.

 For example, let’s say we want to know how many people leaving
in apartment 3, we could simple do this:

int apartment[5] = {3,2,6,4,5};

int no_of_people;

no_of_people = apartment[3];

printf(“Apartment 3 has %d people”,no_of_people);

 The above C code will produce the following output:

8

Remember that array’s index starts at 0!

Apartment 3 has 4 people

Press any key to continue

Principles of Programming

Example 1: finding total inhabitants
#include <stdio.h>
#define size 5

int main(void)
{

int apartment[size] = {3,2,6,4,5};
int index, total = 0;

for (index = 0; index < size; index++)
{

total = total + apartment[index];
}

printf("There are total of %d inhabitants",total);
return(0);

}

9

There are total of 20 inhabitants

Press any key to continue

Principles of Programming

Example 2: list down number of inhabitants in each apartment

#include <stdio.h>

int main(void)

{

int apartment[5] = {3,2,6,4,5};

int index, total = 0;

printf("%s\t%s\n","Apt No", "No of people");

for (index = 0; index < 5; index++)

{

printf("%d\t%d\n",index, apartment[index]);

}

return(0);

}

10

Apt No No of people

0 3

1 2

2 6

3 4

4 5

Press any key to continue

Principles of Programming

Exercise 1

 Modify from example 1, write a program that prints
the average number of inhabitants.

11

Principles of Programming

Exercise 2

 Given the following ordered list of floating point
numbers, write a program that determines its median
and standard deviation.

 Standard deviation formula, :

{1.0, 6.0, 18.0, 39.0, 86.0}

12

Principles of Programming

Data Searching
 Searching is the process of determining whether an

array contains a value that matches a certain key
value/search key.

 The process of finding a particular element of an
array is called searching.

 There are more than one algorithms that can be used
to do a search.

 The most commonly used searching techniques are
linear search and binary search.

 Here, we will discuss how to do searching by using
linear search on an array.

13

Principles of Programming

Linear Search
 Search key is a data element of the same type as the

list elements.

 If search key == list element value, the search is said to
be successful.

 Otherwise, it is unsuccessful.

 Linear search is a simple searching algorithm where:

 data are stored in an array

 a search key is compared with each elements in the
array starting from the first element.

14

Principles of Programming

Example: Linear Search
#include <stdio.h>

int main(void)

{

int list[] = {34, 53, 21, 23, 4};

int i, search_key, found = 0;

printf(“Enter the number that you want to find: ”);

scanf(“%d”, &search_key);

for (i = 0; i < 5; i++)

{

if (list[i] = = search_key)

{

found = 1;

printf(“%d is found at index %d\n”, search_key, i);

}

}

if (found = = 0)

printf(“%d cannot be found in the list\n”,search_key);

return(0);

}
15

Enter the number that you want to find: 53

53 is found at index 1

Press any key to continue

Principles of Programming

Sorting
 Sorting is the process of placing data into a particular

order such as ascending or descending.
 The following example shows the C code for sorting

unsorted list to a list sorted in ascending order.
 Explanation for the working program and the concept

behind it will be done during lecture hour… (so please
attend the class!!!!).

16

Principles of Programming

Example: Simple Sort

void main(void)
{

int pivot, checker, temp, list[]={3, 2, 5, 4, 1};
for (pivot = 0; pivot < (size - 1); pivot++)
{

for (checker = (pivot + 1); checker < size; checker++)
{

if (list[checker] < list[pivot])
{
/* swap the elements */
temp = list[pivot] ;
list[pivot] = list[checker];
list[checker] = temp;
}

}
}

for(int i=0; i<5; i++)
printf("%d ", list[i]);

}

17

Principles of Programming

Two-Dimensional Array
 It is possible to create an array which has more than

one dimension.

 For example:
 2D array: int array[4][2];

 Graphical representation of a 2D array:

18

int myarray[4][2] = {1,2,3,4,5,6,7,8};

1 2

3 4

5 6

7 8

This array has 4 rows and 2 columns.

Col 1 Col2

Row 1

Row 2

Row 3

Row 4

Principles of Programming

Two-Dimensional Array cont…
 Variable initialization can also be done this way:

int myarray[4][2] = {{1,2},{3,4},{5,6},{7,8}};

 This method is less confusing since we can see the rows and columns
division more clearly.

 To initialize a 2D array during execution, we need to use a nested for
loop:

for (row = 0; row < 4; row++)

{

for (column = 0; column < 2; column++)

{

myarray[row][column] = 0;

}

}

 Although it is possible to create a multi-dimensional array, arrays
above 2-dimensions are rarely used.

19

Principles of Programming

Matrices

 A matrix is a set of numbers arranged in a rectangular
grid with rows and columns.

 Below is an example of a matrix with four rows and
three columns, specified as 4 x 3 matrix

A =

−1 0 0
1
1

1
−2

0
3

0 2 1

 Be careful when translating equations in matrix
notation into C statements because of the difference
in subscripting, i.e. in matrix, row and column
numbers begin with 1.

20

Principles of Programming

Example

 Write program that perform dot product from the
following vectors.

𝑨 = 4 −1 3

𝑩 = −2 5 2

int main (void){

int k, product=0, A[] = {4, -1, 3}, B[] = {-2, 5, 2};

for (k=0; k<size-1;k++)

product += A[k]*B[k];

printf(“%d”, product);

return 0;

}

21

Principles of Programming

Exercise

 Write a program that can perform addition and
subtraction of two same size matrices.

22

Principles of Programming

Beyond Two-Dimensional Array

 Declaration of 3 dimensional array

 3D array: int array[2][3][4];

 Four-dimensional array?

23

Principles of Programming

Summary

 In this chapter, we have looked at:

 Array declaration and initialization

 Reading and writing from/to array elements

 Passing array to function

 Simple search

 Simple sort

 2 dimensional array

 Working with matrices

24

Principles of Programming

Exercise

Assume the following array declaration

float number[5] = {2.3, 4.2, 5.0, 7.9, 6.2};

What will be the output of the following statement?

a) printf(“%f”, number[2+2]);

b) printf(“%f”, number[2]+2);

c) printf(“%f”, number[1*2]);

d) printf(“%f”, number[1]*2);

25

Principles of Programming

Exercise

Assume the following array declaration

int result[5] = {56, 69, 89};

int i = 2;

What will be the output of the following statement?

a) printf(“%d”, result[1]);

b) printf(“%d”, result[4]);

c) printf(“%d”, result[0] + result[1]);

d) printf(“%d %d”, i, result[i]);

26

Principles of Programming

Exercise

Assume the following array declaration

int result[3*2];

a) Write C statements that would read the values for the
array element from the user.

b) Write C statements that would list down all the values in
the array.

c) Write C statements that would sum up all the values in the
array.

27

