
Principles of Programming

Chapter 6: Arrays
 In this chapter, you will learn about

 Introduction to Array

 Array declaration

 Array initialization

 Assigning values to array elements

 Reading values from array elements

 Simple Searching

 Simple Sorting

 2 Dimensional arrays

 Working with matrices

1S1 2017/18

Principles of Programming

Introduction to Array

 In C, a group of items of the same type can be set up
using Array

 An array is a group of consecutive memory locations
related by the fact that they all have the same name
and the same type.

 The compiler must reserve storage (space) for each
element/item of a declared array.

 The size of an array is static (fixed) throughout
program execution.

 To refer to a particular location or element in the
array, we specify the name of the array and its index
(the position number of the particular element in the
array).

2

Principles of Programming

3

-10

99

-8

100

27

10

1976

-2020

1

Let say we have an array called a.

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

Name of the array

The position number within

the square brackets is formally

called a subscript. A subscript

can be an integer or an integer

expression. For example if

x = 1 and y = 2, then a[x+y]

is equal to a[3].

Notice that the position

starts from 0.

Principles of Programming

Array Declaration

 Array declaration is made by specifying the data type,
it’s name and the number of space (size) so that the
computer may reserve the appropriate amount of
memory.

 General syntax:
data_type array_name[size];

 Examples:
 int my_array[100];

 char name[20];

 double bigval[5*200];

 int a[27], b[10], c[76];

4

Principles of Programming

Array Initialization

 There are 2 ways to initialize an array: during compilation
and during execution.

 During compilation:
 int arr[] = {1, 2, 3, 4, 5};

 Unsized array : We can define how many elements that we
want since the array size is not given.

 int arr[3] = {90, 21, 22};

 We can define only 3 elements since the array size is already
given.

 int arr[5] = {2,4};

 Initialize the first two elements to the value of 2 and 4
respectively, while the other elements are initialized to zero.

 int arr[5] = {0};

 Initialize all array elements to zero.

5

Principles of Programming

Array Initialization cont…

 During execution:

 Using loop to initialize all elements to zero

int arr[3], index;

for (index = 0; index < 3; index++)

arr[index] = 0;

 Using loop and asking the user to specify the value
for each element.

int arr[3], index;

for (index = 0; index < 3; index++)

{

printf (“arr[%d]:”,index);

scanf(“%d”,&arr[index]);

}

6

Principles of Programming

Assigning value to array element

 We can assign a value to a specific array element by using
its index number.

 Example: let’s say we have an array that represents the
number of inhabitants in 5 apartment units.

int apartment[5]={3,2,6,4,5};

 The above initialization indicates that there are 3 people
living in apartment 0, 2 people living in apartment 1 and
so on.

 Let say that we have a new born in apartment 3, so we
need to change the number of inhabitants living in
apartment three.

apartment[3] = apartment[3] + 1;

 Now, we have the following values in our array:

7

3 2 6 5 5

[0] [1] [2] [3] [4]

apartment

Principles of Programming

Reading values from array elements

 We can read a value from a specific array element by referring to
the index.

 For example, let’s say we want to know how many people leaving
in apartment 3, we could simple do this:

int apartment[5] = {3,2,6,4,5};

int no_of_people;

no_of_people = apartment[3];

printf(“Apartment 3 has %d people”,no_of_people);

 The above C code will produce the following output:

8

Remember that array’s index starts at 0!

Apartment 3 has 4 people

Press any key to continue

Principles of Programming

Example 1: finding total inhabitants
#include <stdio.h>
#define size 5

int main(void)
{

int apartment[size] = {3,2,6,4,5};
int index, total = 0;

for (index = 0; index < size; index++)
{

total = total + apartment[index];
}

printf("There are total of %d inhabitants",total);
return(0);

}

9

There are total of 20 inhabitants

Press any key to continue

Principles of Programming

Example 2: list down number of inhabitants in each apartment

#include <stdio.h>

int main(void)

{

int apartment[5] = {3,2,6,4,5};

int index, total = 0;

printf("%s\t%s\n","Apt No", "No of people");

for (index = 0; index < 5; index++)

{

printf("%d\t%d\n",index, apartment[index]);

}

return(0);

}

10

Apt No No of people

0 3

1 2

2 6

3 4

4 5

Press any key to continue

Principles of Programming

Exercise 1

 Modify from example 1, write a program that prints
the average number of inhabitants.

11

Principles of Programming

Exercise 2

 Given the following ordered list of floating point
numbers, write a program that determines its median
and standard deviation.

 Standard deviation formula, :

{1.0, 6.0, 18.0, 39.0, 86.0}

12

Principles of Programming

Data Searching
 Searching is the process of determining whether an

array contains a value that matches a certain key
value/search key.

 The process of finding a particular element of an
array is called searching.

 There are more than one algorithms that can be used
to do a search.

 The most commonly used searching techniques are
linear search and binary search.

 Here, we will discuss how to do searching by using
linear search on an array.

13

Principles of Programming

Linear Search
 Search key is a data element of the same type as the

list elements.

 If search key == list element value, the search is said to
be successful.

 Otherwise, it is unsuccessful.

 Linear search is a simple searching algorithm where:

 data are stored in an array

 a search key is compared with each elements in the
array starting from the first element.

14

Principles of Programming

Example: Linear Search
#include <stdio.h>

int main(void)

{

int list[] = {34, 53, 21, 23, 4};

int i, search_key, found = 0;

printf(“Enter the number that you want to find: ”);

scanf(“%d”, &search_key);

for (i = 0; i < 5; i++)

{

if (list[i] = = search_key)

{

found = 1;

printf(“%d is found at index %d\n”, search_key, i);

}

}

if (found = = 0)

printf(“%d cannot be found in the list\n”,search_key);

return(0);

}
15

Enter the number that you want to find: 53

53 is found at index 1

Press any key to continue

Principles of Programming

Sorting
 Sorting is the process of placing data into a particular

order such as ascending or descending.
 The following example shows the C code for sorting

unsorted list to a list sorted in ascending order.
 Explanation for the working program and the concept

behind it will be done during lecture hour… (so please
attend the class!!!!).

16

Principles of Programming

Example: Simple Sort

void main(void)
{

int pivot, checker, temp, list[]={3, 2, 5, 4, 1};
for (pivot = 0; pivot < (size - 1); pivot++)
{

for (checker = (pivot + 1); checker < size; checker++)
{

if (list[checker] < list[pivot])
{
/* swap the elements */
temp = list[pivot] ;
list[pivot] = list[checker];
list[checker] = temp;
}

}
}

for(int i=0; i<5; i++)
printf("%d ", list[i]);

}

17

Principles of Programming

Two-Dimensional Array
 It is possible to create an array which has more than

one dimension.

 For example:
 2D array: int array[4][2];

 Graphical representation of a 2D array:

18

int myarray[4][2] = {1,2,3,4,5,6,7,8};

1 2

3 4

5 6

7 8

This array has 4 rows and 2 columns.

Col 1 Col2

Row 1

Row 2

Row 3

Row 4

Principles of Programming

Two-Dimensional Array cont…
 Variable initialization can also be done this way:

int myarray[4][2] = {{1,2},{3,4},{5,6},{7,8}};

 This method is less confusing since we can see the rows and columns
division more clearly.

 To initialize a 2D array during execution, we need to use a nested for
loop:

for (row = 0; row < 4; row++)

{

for (column = 0; column < 2; column++)

{

myarray[row][column] = 0;

}

}

 Although it is possible to create a multi-dimensional array, arrays
above 2-dimensions are rarely used.

19

Principles of Programming

Matrices

 A matrix is a set of numbers arranged in a rectangular
grid with rows and columns.

 Below is an example of a matrix with four rows and
three columns, specified as 4 x 3 matrix

A =

−1 0 0
1
1

1
−2

0
3

0 2 1

 Be careful when translating equations in matrix
notation into C statements because of the difference
in subscripting, i.e. in matrix, row and column
numbers begin with 1.

20

Principles of Programming

Example

 Write program that perform dot product from the
following vectors.

𝑨 = 4 −1 3

𝑩 = −2 5 2

int main (void){

int k, product=0, A[] = {4, -1, 3}, B[] = {-2, 5, 2};

for (k=0; k<size-1;k++)

product += A[k]*B[k];

printf(“%d”, product);

return 0;

}

21

Principles of Programming

Exercise

 Write a program that can perform addition and
subtraction of two same size matrices.

22

Principles of Programming

Beyond Two-Dimensional Array

 Declaration of 3 dimensional array

 3D array: int array[2][3][4];

 Four-dimensional array?

23

Principles of Programming

Summary

 In this chapter, we have looked at:

 Array declaration and initialization

 Reading and writing from/to array elements

 Passing array to function

 Simple search

 Simple sort

 2 dimensional array

 Working with matrices

24

Principles of Programming

Exercise

Assume the following array declaration

float number[5] = {2.3, 4.2, 5.0, 7.9, 6.2};

What will be the output of the following statement?

a) printf(“%f”, number[2+2]);

b) printf(“%f”, number[2]+2);

c) printf(“%f”, number[1*2]);

d) printf(“%f”, number[1]*2);

25

Principles of Programming

Exercise

Assume the following array declaration

int result[5] = {56, 69, 89};

int i = 2;

What will be the output of the following statement?

a) printf(“%d”, result[1]);

b) printf(“%d”, result[4]);

c) printf(“%d”, result[0] + result[1]);

d) printf(“%d %d”, i, result[i]);

26

Principles of Programming

Exercise

Assume the following array declaration

int result[3*2];

a) Write C statements that would read the values for the
array element from the user.

b) Write C statements that would list down all the values in
the array.

c) Write C statements that would sum up all the values in the
array.

27

