
Principles of Programming

Chapter 8: Function

 In this chapter, you will learn about

 Introduction to function

 User-defined function

 Formal and Actual Parameters

 Parameter passing by value

 Parameter passing by reference

 Local and Global Variables

 Storage classes

1S1 2017/18

Principles of Programming

Introduction

 A function is a block of code which is used to perform
a specific task.

 It can be written in one program and used by another
program without having to rewrite that piece of code.
Hence, it promotes usability!!!

 Functions can be put in a library. If another program
would like to use them, it will just need to include the
appropriate header file at the beginning of the
program and link to the correct library while
compiling.

2

Principles of Programming

Introduction

 Functions can be divided into two categories :

 Predefined functions (standard functions)

 Built-in functions provided by C that are used by
programmers without having to write any code for
them. i.e: printf(), scanf(), etc

 User-Defined functions

 Functions that are written by the programmers
themselves to carry out various individual tasks.

3

Principles of Programming

Standard/Pre-defined Functions

 Standard functions are functions that have been pre-
defined by C and put into standard C libraries.

 Example: printf(), scanf(), pow(), ceil(), rand(), etc.

 What we need to do to use them is to include the
appropriate header files.

 Example: #include <stdio.h>, #include <math.h>

 What contained in the header files are the prototypes
of the standard functions. The function definitions
(the body of the functions) has been compiled and
put into a standard C library which will be linked by
the compiler during compilation.

4

Principles of Programming

User-defined Functions
 A programmer can create his/her own function(s).
 It is easier to plan and write our program if we divide it

into several functions instead of writing a long piece of
code inside the main function.

 A function is reusable and therefore prevents us
(programmers) from having to unnecessarily rewrite what
we have written before.

 In order to write and use our own function, we need to do
the following:

 create a function prototype (declare the function)

 define the function somewhere in the program
(implementation)

 call the function whenever it needs to be used

5

Principles of Programming

Function Definition

 It is also called as function implementation

 A function definition is where the actual code for the
function is written. This code will determine what the
function will do when it is called.

 A function definition consists of the following
elements:
 A function return data type (return value)

 A function name

 An optional list of formal parameters enclosed in
parentheses (function arguments)

 A compound statement (function body)

6

Principles of Programming

Function Definition
 A function definition has this format:

rdtype fName (dt1 var1, dt2 var2, dt3 var3, …..)
{

local variable declarations;
statements;

}

 The return data type (rdtype) indicates the type of data
that will be returned by the function fName to the calling
function. There can be only one return value.

 A function that does not returning any value must be have
the return data type written as ‘void’.

 If the function does not receive any parameter from the
calling function, ‘void’ is also used in the place of the
parameter.

 Note that if the function is returning a value, it needs to
use the keyword return.

7

Principles of Programming

Function definition example 1
 A simple function is :

void print_message (void)

{

printf("Hello, are you having fun?\n");

}

 Note the function name is print_message. No arguments
are accepted by the function, this is indicated by the
keyword void enclosed in the parentheses. The
return_value is void, thus data is not returned by the
function.

 So, when this function is called in the program, it will
simply perform its intended task which is to print

Hello, are you having fun?

8

Principles of Programming

Function definition example 2

 Consider the following example:

int calculate (int num1, int num2)

{

int sum;

sum = num1 + num2;

return sum;

}

 The above code segments is a function named calculate. This
function accepts two arguments i.e. num 1 and num2 of the type int.
The return_value is int, thus this function will return an integer value.

 So, when this function is called in the program, it will perform its task
which is to calculate the sum of any two numbers and return the
result of the summation.

9

Principles of Programming

Function Prototype

 A function prototype will tell the compiler that there
exist a function with this name defined somewhere in
the program and therefore it can be used even
though the function has not yet been defined at that
point.

 If the function receives some arguments, the variable
names for the arguments are not needed. Only the
data type need to be stated.

 Function prototypes need to be written at the
beginning of the program.

10

Principles of Programming

Function Prototype

 For the following function definition,

void print_message (void)

{

printf("Hello, are you having fun?\n");

}

 The corresponding function prototype is

void print_message (void);

11

Principles of Programming

Function Prototype

 For the following function definition,

int calculate (int num1, int num2)

{

int sum;

sum = num1 + num2;

return sum;

}

 The corresponding function prototype is

int calculate (int, int);

12

Principles of Programming

Function Call

 Any function (including main) could utilise any other
function definition that exist in a program – hence it
is said to be calling the function and known as calling
function.

 To call a function (i.e. to ask another function to do
something for the calling function), it requires the
FunctionName followed by a list of actual parameters
(or arguments), if any, enclosed in parenthesis.

 For example, a function call to the function calculate
defined in the previous slide will look something like
below.
void main(void){

...

calculate (6, 7);

...

}

13

Principles of Programming

Basic skeleton…

#include <stdio.h>

//function prototype

void fn1(void);

int main(void)

{

...

//function call

fn1();

...

return (0);

}

//function definition
void fn1(void)
{

local variable declaration;
statements;

}

14

main is

the calling

function

fn1 is the

called

function

Principles of Programming

Function Call cont…
 If the function returns a value, then the returned value

need to be assigned to a variable so that it can be stored. For
example:

int GetUserInput (void); /* function prototype*/

int main(void)

{

int input;

input = GetUserInput();

return(0);

}

 However, it is perfectly okay (syntax wise) to just call the
function without assigning it to any variable if we want to
ignore the returned value.

 We can also call a function inside another function. For
example:

printf("User input is: %d", GetUserInput());

15

Principles of Programming

Types of function

 Type 1: Receive no input parameter and return
nothing

 Type 2: Receive no input parameter but return a
value

 Type 3: Receive input parameter(s) and return
nothing

 Type 4: Receive input parameters(s) and return a
value

16

Principles of Programming

Type 1 Example

#include <stdio.h>

void greeting(void); /* function prototype */

int main(void)

{

greeting();

greeting();

return(0);

}

void greeting(void)

{

printf("Have fun!! \n");

}

17

In this example, function greeting does not

receive any arguments from the calling function

(main), and does not return any value to the

calling function, hence type ‘void’ is used for

both the input arguments and return data type.

Have fun!!

Have fun!!

Press any key to continue

Principles of Programming

Type 2 Example
#include <stdio.h>

int getInput(void);

int main(void)

{

int num1, num2, sum;

num1 = getInput();

num2 = getInput();

sum = num1 + num2;

printf("Sum is %d\n",sum);

return(0);

}

int getInput(void)

{

int number;

printf("Enter a number:");

scanf("%d“,&number);

return number;

}
18

Enter a number: 5

Enter a number: 4

Sum is 9

Press any key to continue

Principles of Programming

#include <stdio.h>

int getInput(void);

void displayOutput(int);

int main(void)

{

int num1, num2, sum;

num1 = getInput();

num2 = getInput();

sum = num1 + num2;

displayOutput(sum);

return(0);

}

int getInput(void)

{

int number;

printf("Enter a number:");

scanf("%d",&number);

return number;

}

void displayOutput(int sum)

{

printf("Sum is %d \n",sum);

} 19

Enter a number: 5

Enter a number: 4

Sum is 9

Press any key to continue

Type 3 Example

Principles of Programming

Type 4 Example
#include <stdio.h>

int calSum(int,int); /*function protototype*/

int main(void)

{

int sum, num1, num2;

printf(“Enter two numbers to calculate its sum:\n”);

scanf(“%d%d”,&num1,&num2);

sum = calSum(num1,num2); /* function call */

printf(“\n %d + %d = %d”, num1, num2, sum);

return(0);

}

int calSum(int val1, int val2) /*function definition*/

{

int sum;

sum = val1 + val2;

return sum;

}

20

Enter two numbers to calculate its sum:

4

9

4 + 9 = 13

Press any key to continue

Principles of Programming

Type 4 Example (Explanation)
 In this example, the calSum function receives input

parameters of type int from the calling function (main).
 The calSum function returns a value of type int to the

calling function.
 Therefore, the function definition for calSum:

int calSum(int val1, int val2)

 Note that the function prototype only indicates the type
of variables used, not the names.

int calSum(int,int);

 Note that the function call is done by (main) calling the
function name (calSum), and supplying the variables
(num1,num2) needed by the calSum function to carry out
its task.

21

Principles of Programming

Type 4 Example (Complete Flow)
#include<stdio.h>

int calSum(int, int);

int main(void)

{

int num1, num2, sum;

printf(“Enter 2 numbers to calculate its sum:”);

scanf(“%d %d”, &num1, &num2);

sum = calSum (num1, num2);

printf (“\n %d + %d = %d”, num1, num2, sum);

return (0);

}

int calSum(int val1, int val2)

{

int sum;

sum = val1 + val2;

return sum;

}

22

Principles of Programming

Function with parameter (Type 3 & 4)

 When a function calls another function to perform a
task, the calling function may also send data to the
called function. After completing its task, the called
function may pass the data it has generated back to
the calling function.

 Two terms used:

 Formal parameter

 Variables declared in the formal list of the function
header (written in function prototype & function
definition)

 Actual parameter

 Constants, variables, or expression in a function call that
correspond to its formal parameter

23

Principles of Programming

Formal and Actual parameters

 The three important points concerning functions with
parameters are: (number, order and type)

 The number of actual parameters in a function call must be
the same as the number of formal parameters in the
function definition.

 A one-to-one correspondence must occur among the actual
and formal parameters. The first actual parameter must
correspond to the first formal parameter and the second to
the second formal parameter, an so on.

 The type of each actual parameter must be the same as that
of the corresponding formal parameter.

24

Principles of Programming

Formal and Actual parameters

#include <stdio.h>
int calSum(int,int); /*function protototype*/

int main(void)
{

…..
…..
sum = calSum(num1,num2); /* function call */
…..

}

int calSum(int val1, int val2) /*function header*/
{

……
……
……

}

25

Formal

Parameters

Formal

Parameters

Actual

Parameters

Principles of Programming

Function Call cont…
 If the function requires some arguments to be passed

along, then the arguments need to be listed in the
bracket () according to the specified order. For
example:

void Calc(int, double, char, int);

int main(void)

{

int a, b;

double c;

char d;

…

Calc(a, c, d, b);

return (0);

}

26

Function Call

Principles of Programming

Types of Parameter Passing
 There are 2 ways to call a function:

 Call by value (parameter passing by value)
 In this method, only the copy of variable’s value (copy of

actual parameter’s value) is passed to the function. Any
modification to the passed value inside the function will not
affect the actual value.

 In all the examples that we have seen so far, this is the
method that has been used.

 Call by reference (parameter passing by reference)
 In this method, the reference (memory address) of the

variable, i.e. the pointer to the variable, is passed to the
function. Any modification passed done to the variable inside
the function will affect the actual value.

27

Principles of Programming

Limitation of Parameter Passing by Value

 Consider the following program.

#include<stdio.h>

void getValue(int);

void main(void){

int a=0;

getValue(a);

printf("%d\n", a);

}

void getValue(int b){

b = 10;

}

28

Principles of Programming

Limitation of Parameter Passing by Value

#include<stdio.h>

int getValue(int);

void main(void){

int a=0;

a=getValue(a);

printf("%d\n", a);

}

int getValue(int b){

b = 10;

return b;

}

29

Principles of Programming

Passing array as parameter

 The name of an array is the pointer to the first
element of the array. Due to this, passing an array as
parameter to a function is considered as passing by
reference.

30

Principles of Programming

Passing 1D array as parameter
#include<stdio.h>
#include<stdlib.h>

void fillArray(int []);

void main(void){
int intarray[10]={0}, i;

fillArray(intarray);

for(i=0;i<10;i++){
printf("%d ", intarray[i]);

}

void fillArray(int a[]){
int i;
for (i=0;i<10;i++)
a[i]=rand();

}

31

Principles of Programming

Passing 2D array as parameter
#include<stdio.h>
#include<stdlib.h>

void fill2DArray(int [], int[]);

void main(void){
int intarray[10][5]={0}, i, j;

fill2DArray(intarray);

for(i=0;i<10;i++){
for(j=0;j<5;j++)

printf("%d ", intarray[i][j]);
}

void fill2DArray(int a[10], int b[]){
int i;
for (i=0;i<10;i++){

for(j=0;j<5;j++)
a[i][j]=rand();

}
}

32

Principles of Programming

Using Header File

 Function prototypes can also be put in a header
file.Header files are files that have a .h extension.

 The header file can then be included at the beginning
of our program.

 To include a user defined header file, type:
#include "header_file.h "

 Notice that instead of using < > as in the case of
standard header files, we need to use " ". This will
tell the compiler to search for the header file in the
same directory as the program file instead of
searching it in the directory where the standard
library header files are stored.

33

Principles of Programming

Using Header File

#include<stdio.h>

void main(void){

printMessage();

}

void printMessage(void){

printf("Hello! Welcome! Good Morning!\n");

}

34

Principles of Programming

Using Header File

35

Principles of Programming

Using Header File
 Write the following and save as myfile.c

#include<stdio.h>

void printMessage(void){

printf("Hello! Welcome! Good Morning!\n");

}

 In your myfile.h file,
#include"myfile.c"

void printMessage(void);

}

 In your function.c file,
#include"myfile.h"

void main(void){

printMessage();

}

36

Principles of Programming

Using Header File

 The output …

37

Principles of Programming

Macros

 A simple operation can also be specified by a
preprocessing directive called a macro.

 Example:
#define degrees_C(x) (((x) – 32) * (5.0/9.0))

int main(void){

double temp;

printf(“Enter temperature in degrees Fahrenheit:);

scanf(“%f”, &temp);

printf(“%f degrees Centigrade\n”, degrees_C(temp));

return 0;

}

38

Principles of Programming

Exercise

 Write macros to compute the following values.

1. Area of a square, A = side2

2. Area of a rectangle, A = side1 x side2

3. Area of a trapezoid, A = ½ x base x (height1 +
height2) where height1 and height2 are parallel

39

Principles of Programming

Declaration of Variables

 Up until now, we have learnt to declare our variables
within the braces of segments (or a function)
including the main.

 It is also possible to declare variables outside a
function. These variables can be accessed by all
functions throughout the program.

40

Principles of Programming

Local and Global Variables

 Local variables only exist within a function. After
leaving the function, they are ‘destroyed’. When the
function is called again, they will be created
(reassigned).

 Global variables can be accessed by any function
within the program. While loading the program,
memory locations are reserved for these variables
and any function can access these variables for read
and write (overwrite).

 If there exist a local variable and a global variable
with the same name, the compiler will refer to the
local variable.

41

Principles of Programming

Global variable - example
#include <stdio.h>
void initialise(void);
void getInputs(void);
void calSum(void);

int sum, num1, num2;

int main(void)
{

/* initialise sum to 0 */
initialise();

/* read num1 and num2 */
getInputs();

calSum();

printf("Sum is %d\n",sum);
return (0);

}

void initialise(void)
{

sum = 0;
}

void getInputs(void)
{

printf("Enter num1 and num2:\n");
scanf("%d%d",&num1,&num2);

}

void calSum(void)
{

sum = num1 + num2;
}

42

Global variables

Enter num1 and num2:

4

9

Sum is 13

Press any key to continue

Principles of Programming

Global variable – example explained

 In the previous example, no variables are passed between
functions.

 Each function could have access to the global variables,
hence having the right to read and write the value to it.

 Even though the use of global variables can simplify the
code writing process (promising usage), it could also be
dangerous at the same time.

 Since any function can have the right to overwrite the
value in global variables, a function reading a value from a
global variable can not be guaranteed about its validity.

43

Principles of Programming

Global variable – the dangerous side

44

Imagine what would be the output

of this program if someone

‘accidently’ write the following

function call inside calSum?

#include <stdio.h>
void initialise(void);
void getInputs(void);
void calSum(void);

int sum, num1, num2;

int main(void)
{

/* initialise sum to 0 */
initialise();

/* read num1 and num2 */
getInputs();

calSum();

printf("Sum is %d\n",sum);
return(0);

}

void initialise(void)
{

sum = 0;
}

void getInputs(void)
{

printf("Enter num1 and num2:\n");
scanf("%d%d",&num1,&num2);

}

void calSum(void)
{

sum = num1 + num2;
initialise();

}

Enter num1 and num2:

4

9

Sum is 0

Press any key to continue

Principles of Programming

Storage Classes

 Storage class indicates the lifetime of a variable used
in a program.

 Local variables only exist within a function by default.
When calling a function repeatedly, we might want to

 Start from scratch – re-initialise the variables

 The storage class is ‘auto’

 Continue where we left off – remember the last value

 The storage class is ‘static’

 Another two storage classes (seldomly used)

 register (ask to use hardware registers if available)

 extern (to make local variables external i.e. global
variables)

45

Principles of Programming

Auto storage class

 Variables with automatic storage duration are
created when the block in which they are declared is
entered, exist when the block is active and destroyed
when the block is exited.

 The keyword auto explicitly declares variables of
automatic storage duration. It is rarely used because
when we declare a local variable, by default it has
class storage of type auto.

 int a, b; is the same as auto int a, b;

46

Principles of Programming

Static storage class

 Variables with static storage duration exist from the
point at which the program begin execution.

 All the global variables are static, and all local
variables and functions formal parameters are
automatic by default. Since all global variables are
static by default, in general it is not necessary to
use the static keyword in their declarations.

 However the static keyword can be applied to a
local variable so that the variable still exist even
though the program has gone out of the function.
As a result, whenever the program enters the
function again, the value in the static variable still
holds.

47

Principles of Programming

Auto - Example
#include <stdio.h>

void auto_example(void);

int main(void)

{

int i;

printf("Auto example:\n");

auto_example();

auto_example();

auto_example();

return(0);

}

void auto_example(void)

{

auto int num = 1;

printf(“ %d\n”,num);

num = num + 2;

} 48

Auto example:

1

1

1

Press any key to continue

Principles of Programming

Static - Example
#include <stdio.h>

void auto_example(void);

int main(void)

{

int i;

printf(“Static example:\n");

static_example();

static_example();

static_example();

return(0);

}

void static_example(void)

{

static int num = 1;

printf(“ %d\n”,num);

num = num + 2;

} 49

Static example:

1

3

5

Press any key to continue

Principles of Programming

Summary

 In this chapter, you have learnt:

 Standard vs User Define functions

 Function prototype, function definition and function
call

 Formal vs Actual parameters

 Parameter passing by values

 Local vs Global variables

 Auto vs Static storage class

50

