

1.0) Transistor

1.0.1) Introduction

"In electronics, a transistor is a semi-conductor device commonly used to amplify or switch electronic signals.

[~] A transistor is made of a solid piece of a semiconductor material, with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current flowing through another pair of terminals.

"The transistor is the **fundamental building block of modern electronic devices**, and is used in radio, telephone, computer and other electronic systems. Some transistors are packaged individually but **most are found in integrated circuits**.

From: Wikipedia

1.0) Transistor (Cont)

1.0.2) Importance (Cont)

A logic gate consists of about twenty transistors whereas an advanced micro-processor, as of 2006, can use as many as 1.7 billion transistors (MOSFETs).
bout 60 million transistors were built in 2002 ... for [every] man, woman, and child on Earth.+

["]The transistor's low cost, flexibility and reliability have made it a **ubiquitous device**.

"Transistorized mechatronic circuits have replaced electromechanical devices in controlling appliances and machinery.

From: Wikipedia

In the		Chr La			
Configuration	Voltage gain, Av	Current gain, <i>Ai</i>	Input Resistance, <i>Ri</i>	Output Resistance, <i>Ro</i>	Application
Common- Emitter (C-E)	High, Av > 1	High, <i>Ai</i> > 1	Moderate	Moderate to high	Power amplifier
Common- Collector (C-C)	Unity, Av ≈ 1	High, <i>Ai</i> > 1	High	Low	Voltage buffer
Common-Base (C-B)	High, $Av > 1$	Unity, Ai ¹ 1	Low	Moderate to high	Current buffer

"In most applications, a single-transistor amplifier (single stage) <u>will not be able to meet</u> the **combined specifications of a given amplification factor, input resistance, and output resistance**. For example, the required voltage gain may exceed that which can be obtained in a single stage circuit. "Transistor amplifier circuits can be connected in series, or <u>cascaded</u>, as shown in <u>Figure 6.65</u>. This may be done, <u>for example</u>, to increase the overall small-signal voltage gain or to provide an overall

small-signal voltage gain or to provide an overall voltage gain (Av) greater than 1, with a very low output resistance (*Ro*).

