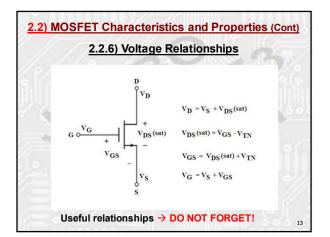
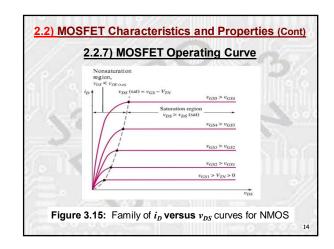
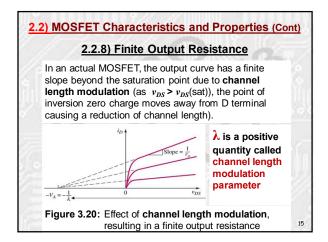
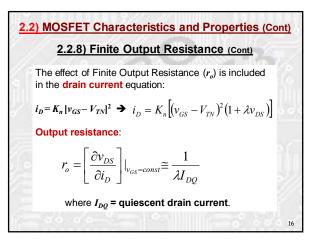
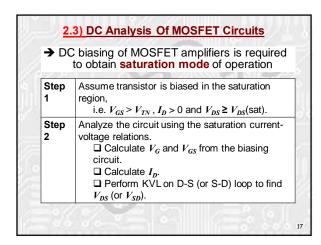

hence $I_G = 0$ (No gate current!)

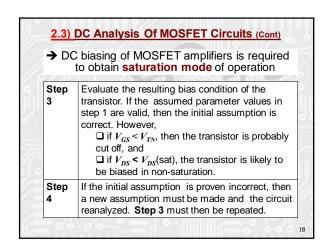

2.2.3) Modes of Operation There are 3 modes of operation:			
Region	NMOS	PMOS	
Cut off	$0 < v_{GS} < V_{TN}$	$0 < v_{SG} < V_{TP}$	
	$i_D = 0$	$i_D = 0$	
Non-saturation	$v_{GS} > V_{TN}$	$v_{SG} > V_{TP}$	
	$v_{DS} < v_{GS} - V_{TN}$	$v_{SD} < v_{SG} + V_{TP}$	
	$i_D \neq 0$	$i_D \neq 0$	
Saturation	$v_{GS} > V_{TN}$	$v_{SG} > V_{TP}$	
	$v_{DS} \ge v_{GS} - V_{TN}$	$v_{SD} \ge v_{SG} + V_{TP}$	
	$i_D \neq 0$	$i_D \neq 0$	

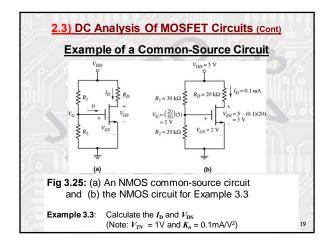

2.2.4) Current-voltage Relationships				
Region	NMOS	PMOS		
Non- saturation	$v_{DS} < v_{DS}(\text{sat})$	$v_{SD} < v_{SD}$ (sat)		
Saturation	$i_D = K_n [2(v_{GS} - V_{TN})v_{DS} - v_{DS}^2]$	T and a second		
Saturation	$v_{DS} \ge v_{DS}(\text{sat})$ $i_D = K_n [v_{GS} - V_{TN}]^2$	$v_{SD} \ge v_{SD}(\text{sat})$ $i_D = K_p [v_{SG} + V_{TP}]^2$		
Transition Point	$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$	$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$		
Enhancement Mode	V_{TN} > 0 V	$V_{TP} < 0 V$		
Depletion Mode	<i>V_{TN}</i> < 0 V	$V_{TP} > 0 V$		

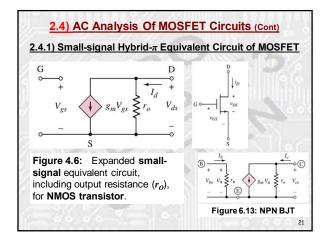

and the second s	cteristics and Properties (Cont) tion Parameters, K _n and K _p
″ NMOSFET:	$K_n = \frac{W\mu_n C_{ax}}{2L} = \frac{\dot{k_n} \cdot W}{2} \cdot \frac{W}{L}$
″ PMOSFET:	$K_p = \frac{W\mu_p C_{ox}}{2L} = \frac{k_p^{\prime}}{2} \cdot \frac{W}{L}$
where:	$C_{\alpha x} = \varepsilon_{\alpha x} / t_{\alpha x}$
is the oxide c	apacitance per unit area

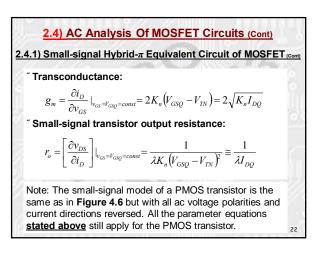

μ_n	mobility of electrons
μ_p	mobility of holes
E _{ox}	oxide permittivity
t _{ox}	oxide thickness
W	channel Width
L	channel Length
$k'_n = \mu_n C_{ox}$	process conduction parameter (provided by manufacturer for a particular process

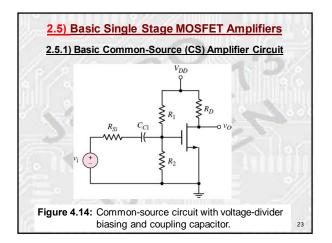


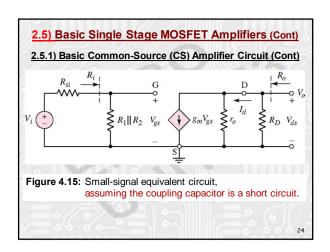


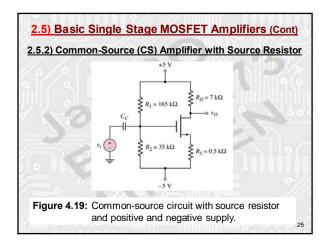











	e MOSFET amplifier analysis, superposition applies, i.e. perform dc and ac analysis separately
Step 1	Analyze with only dc sources present to give the dc or quiescent solution. The transistor must be biased in the saturation region in order to produce a linear amplifier.
Step 2	Replace each element in the circuit with its small-signal model, including replacing the transistor by its small-signal equivalent model.
	To draw the small-signal model of the amplifier circuit: Start with the three terminals of the transistor. Then sketch equivalent circuit between these terminals. Connect the small-signal model of the remaining circuit elements to the transistor terminals.
Step 3	Analyze the small-signal equivalent circuit, setting the dc source components equal to zero, to produce the response of the circuit to time-varying input signals only.

