

7.2) Small-Signal Analysis of BJT Acti	ve Load (Cont)
Recall that	
$g_m = I_Q / 2V_T, r_{o2} = V_{A2} / I_2, r_{o4} = V_{A4}$	/ I4
The parameters $g_{\theta 2}$, $g_{\theta 4}$, and G_L are corresponding conductances. Assum	e the ning
$I_2 = I_4 = I_Q / 2$	5
Equation (11.100) can be rewritten in th	ne form
$A_{d} = \frac{\frac{I_{Q}}{2V_{T}}}{\frac{I_{Q}}{2V_{A2}} + \frac{I_{Q}}{2V_{A4}} + \frac{1}{R_{L}}}$	(11.101)

	Example 11.10
Objective: Determine the with an active account.	he differential-mode gain of a diff-amp ve load, taking loading effects into
Consider the I_0 = 0.20 mA for all transis	e diff-amp in Figure 11.30 , biased with A . Assume an Early voltage of $V_A = 100 \text{ V}$ stors.
Determine the voltage gain voltage gain	he open-circuit ($R_L = \infty$) differential-mode , as well as the differential-mode , when $R_L = 100 \text{ k}\Omega$.

7.4) Small-Signal Analysis of MOSFET Active Load (Cont)			
• From Figure 11.34(b), the Output Voltage is			
$v_o = 2\left(\frac{g_m v_d}{2}\right) (r_{o2} r_{o4}) $ (11.105)			
and the small-signal diff-mode voltage gain is			
$A_{d} = \frac{v_{o}}{v_{d}} = g_{m} (r_{o2} r_{o4}) $ (11.106)			
Equation (11.106) can be rewritten in the form			
$A_{d} = \frac{g_{m}}{\frac{1}{1} + \frac{1}{r}} = \frac{g_{m}}{g_{o2} + g_{o4}} $ (11.107)			
<i>I</i> ₀₂ <i>I</i> ₀₄	33		

