

11.0) 741 Op-Amp

• The 741 op-amp has been produced **since 1966** by many semiconductor device manufacturers.

• The 741 is still a **widely used general-purpose op-amp** although there have been many advances in op-amp design.

• Even though the 741 is a **fairly old design**, it still **provides a useful case study to describe the general circuit configuration** and to perform a detailed dc and small-signal analysis. From the ac analysis, usually **voltage gain and frequency response** of the circuit are determined.

11.1) Circuit Description (Cont)

• The 741 consists of input differential amplifier stage, gain stage, output stage and separate bias circuit (which establishes the bias currents throughout the op-amp).

Like most op-amp, the 741 is biased with both positive and negative supply voltages. This eliminates the need for input coupling capacitors, which in turn means that the circuit is also a dc amp.
The dc output voltage is zero when the applied differential input signal is zero.

• Typical supply voltages are $V^+=15V$ and $V^-=-15V$, although input voltages as low as 5V can be used.

11.1.1) Input Diff-Amp and Biasing (Cont)

• Q_5 , Q_6 and Q_7 with R_1 , R_2 and R_3 : form active load.

• Output (single-sided) at collector of Q_4 and Q_6

• The dc output voltage at collector Q_6 is at lower potential than inputs at bases of $Q_1 \& Q_2$. As signal passes through the op-amp, dc voltage level shifts several times. By design, when the signal reaches output terminal, **dc voltage should be zero if a zero diff input** signal is applied. **Two null terminals** on input stage are used to make appropriate adjustments to accomplish this design goal.

11.1.1) Input Diff-Amp and Biasing (Cont)

• $Q_{12}, Q_{11} \& R_5$: dc current biasing \rightarrow provides I_{REF} • $Q_{10}, Q_{11} \& R_4$: Widlar current source for common-base transistors $(Q_3 \& Q_4)$ and current mirror formed by $Q_8 \& Q_9$. • $Q_3 \& Q_4$: are **lateral pnp device**, which refers to fabrication process and geometry of the transistors \rightarrow **provide added protection**

against voltage breakdown, although the

current gain is smaller than in npn devices.

Parameters	Minimum	Typical	Maximum	Units
Input bias current		80	500	nA
Diff-mode input resistance	0.3	2.0		MΩ
Input capacitance		1.4		pF
Output short-circuit current		25		mA
Open-loop gain ($R_L \ge 2k\Omega$)	50,000	200,000		V/V
Output resistance		75		Ω
Unity-gain frequency		1		MHz

11.2.1) Bias Circuit and Input Stage (Cont)
• Neglecting base currents
$$\Rightarrow I_{C8} = I_{C9} = I_{C10}$$

Then, quiescent collector currents in Q_I through Q_4 :
 $I_{CI} = I_{C2} = I_{C3} = I_{C4} = I_{C10}/2$ (13.3)
• Assuming dc currents in the input stage are exactly
balanced, dc voltage at collector of Q_6 = input to the
second stage = dc voltage at collector of Q_5 (or V_{C5})
 $V_{C6} = V_{C5} = V_{BE7} + V_{BE6} + I_{C6}R_2 + V^-$ (13.4)
 \Rightarrow The dc level shifts through the op-amp.

11.2.3) Output Stage (Cont)
• *I*_{Bias} is supplied by *Q*_{13A} and input signal is applied
to base of *Q*₂₂ (emitter follower).
• *Q*₁₈ & *Q*₁₉ → Establishes 2*V*_{BE} drops between base
terminals of *Q*₁₄ & *Q*₂₀ → This *V*_{BB} produces
quiescent collector currents in *Q*₁₄ & *Q*₂₀ → Biasing
both *Q*₁₄ & *Q*₂₀ "on" with no signal present at the
input, to remove crossover distortion.
• *Q*_{13A} is scaled to 0.25 of *Q*₁₂. Neglecting base
currents,

$$I_{C13A} = 0.25 I_{REF} = I_{Bias}$$
(13.10)

11.2.4) Short-Circuit Protection Circuitry (Cont)

• The maximum current in Q_{20} is limited by components R_7 , Q_{21} & Q_{24} .

□ A large output current results in a voltage drop across R_7 (V_{R7}), sufficient to turn on Q_{21} .

□ Excess current in Q_{20} will be shunted by Q_{21} and Q_{24} . This protects output transistor Q_{20} .

41

• In calculating voltage gain of each stage, loading effect of the following stage is accounted.

• Therefore, the overall voltage gain is the product of the individual gain factors, or

$$A_{v} = A_{d} A_{v2} A_{v3}$$

where $A_{r,3}$ is voltage gain of the output stage. It is assumed that $A_{r,3} \approx 1$ because output stage is emitter follower.

• Typical voltage gain values of the 741 op-amp is in the range of 200,000.

61

