

11.0) 741 Op-Amp

• The 741 op-amp has been produced **since 1966** by many semiconductor device manufacturers.

• The 741 is still a **widely used general-purpose op-amp** although there have been many advances in op-amp design.

• Even though the 741 is a **fairly old design**, it still **provides a useful case study to describe the general circuit configuration** and to perform a detailed dc and small-signal analysis. From the ac analysis, usually **voltage gain and frequency response** of the circuit are determined.

11.1) Circuit Description (Cont)

• The 741 consists of **input differential amplifier stage, gain stage, output stage and separate bias circuit** (which establishes the bias currents throughout the op-amp).

• Like most op-amp, the 741 is **biased with both positive and negative supply voltages**. This eliminates the need for input coupling capacitors, which in turn means that the circuit is also a dc amp. • The dc output voltage is zero when the applied differential input signal is zero.

• Typical supply voltages are V^+ =15V and V^- = -15V, although input voltages as low as 5V can be used.

5

11.1.1) Input Diff-Amp and Biasing (Cont)

 \cdot Q_5 , Q_6 and Q_7 with R_1 , R_2 and R_3 : form **active load.**

• **Output** (single-sided) at collector of Q_4 and Q_6

 \bullet The dc output voltage at collector $\mathcal{Q}_{\pmb{\delta}}$ is at lower potential than inputs at bases of *Q¹* & *Q²* . As signal passes through the op-amp, dc voltage level shifts several times. By design, when the signal reaches output terminal, **dc voltage should be zero if a zero diff input** signal is applied. **Two null terminals** on input stage are used to make appropriate adjustments to accomplish this design goal.

7

11.1.1) Input Diff-Amp and Biasing (Cont) • Q_{12} , Q_{11} & R_5 : dc current biasing \rightarrow provides *IREF* • *Q¹⁰* , *Q¹¹* & *R⁴* : Widlar current source for common-base transistors $(\mathcal{Q}_{\jmath} \ \& \ \mathcal{Q}_{\jmath})$ and current mirror formed by $\bm{\mathcal{Q}}_s$ & $\bm{\mathcal{Q}}_g$. • *Q³* & *Q⁴* : are **lateral pnp device**, which refers to fabrication process and geometry of the transistors \rightarrow **provide added protection against voltage breakdown**, although the current gain is smaller than in npn devices.

11.2.1) Bias Circuit and Input Stage (Cont)
\n• Neglecting base currents →
$$
I_{CS} = I_{C9} = I_{Cl0}
$$

\nThen, quiescent collector currents in Q_I through Q_I :
\n $I_{CI} = I_{C2} = I_{C3} = I_{C4} = I_{Cl0}/2$ (13.3)
\n• Assuming dc currents in the input stage are exactly balanced, dc voltage at collector of Q_6 = input to the second stage = dc voltage at collector of Q_S (or V_{CS})
\n $V_{C6} = V_{CS} = V_{BE7} + V_{BE6} + I_{C6}R_2 + V$ (13.4)
\n→ The dc level shifts through the op-amp.

11.2.3) Output Stage (Cont)
\n•
$$
I_{Bias}
$$
 is supplied by Q_{IA} and input signal is applied
\nto base of Q_{22} (emitter followed).
\n• $Q_{IS} \& Q_{I9} \rightarrow$ Establishes $2V_{BE}$ drops between base
\nterminals of $Q_{IA} \& Q_{20} \rightarrow$ This V_{BB} produces
\nquiescent collector currents in $Q_{IA} \& Q_{20} \rightarrow$ Biasing
\nboth $Q_{IA} \& Q_{20}$ "on" with no signal present at the
\ninput, **to remove crossover distortion**.
\n• Q_{IA} is scaled to 0.25 of Q_{I2} . Neglecting base
\ncurrents,
\n $I_{CIAA} = 0.25 I_{REF} = I_{Bias}$ (13.10)

 \square Excess current in $\overline{Q}_{2\theta}$ will be shunted by *Q²¹* and *Q²⁴* . This protects output transistor *Q²⁰* .

• In calculating voltage gain of each stage, loading effect of the following stage is accounted.

• Therefore, the overall voltage gain is the product of the individual gain factors, or

$$
A_{\nu} = A_d A_{\nu 2} A_{\nu 3}
$$

where $A_{\nu3}$ is voltage gain of the output stage. It is assumed that $A_{v3} \approx 1$ because output stage is emitter follower.

• **Typical voltage gain values of the 741 op-amp is in the range of 200,000**.

