Basic Transistor Formula

Table 5.1: Summary of the bipolar current-voltage relationships in the active region

- *Is* ⁼ Saturation current (strongly dependant on device and temperature
- $\boldsymbol{V}_{\mathcal{T}}$ = Thermal voltage
- β = Common-emitter current gain
- α = Common-base current gain

Table 5.1: Summary of the bipolar current-voltage relationships in the active region (Cont)

For both transistors
\n
$$
\alpha = \left(\frac{\beta}{1+\beta}\right); \beta = \left(\frac{\alpha}{1-\alpha}\right)
$$
\n
$$
i_C = \beta i_B
$$
\n
$$
i_C = \alpha i_E = \left(\frac{\beta}{1+\beta}\right) i_E
$$
\n
$$
i_E = i_B + i_C = \left(1+\beta\right) i_B
$$

- β = Common-emitter current gain
- α = Common-base current gain

Small-signal Hybrid- π Equivalent Circuit of BJT

Expanded small-signal model of the BJT, including the Early effect when the circuit contains the

(a) voltage controlled current source (transconductance) and(b) current controlled current source (current gain parameters)

Note: The small-signal model of ^a **pnp BJT** is the same as in **figure above** but with all ac voltage polarities and current directions reversed. All the parameter equations stated **next** still apply for the **pnp** transistor.

<u>Small-signal Hybrid-π Equivalent Circuit of BJT (Cont)</u>

mg r $\overline{}$ = $\overline{}$ ∂ \sim • Diffusion resistance: • Transconductance: $\overline{}$ $\sqrt{2}$ ∂∂=• ac common-emitter current gain:

• Small-signal transistor output resistance:

$$
r_{\pi} = \left[\frac{\partial i_B}{\partial v_{BE}}|_{Q-pt}\right]^{-1} = \frac{\beta V_T}{I_{CQ}}
$$
\n
$$
g_m = \left[\frac{\partial i_C}{\partial v_{BE}}|_{Q-pt}\right] = \frac{I_{CQ}}{V_T}
$$
\n
$$
\beta = \left[\frac{\partial i_C}{\partial i_B}|_{Q-pt}\right] = g_m r_{\pi}
$$
\n
$$
r_o = \left[\frac{\partial i_C}{\partial v_{CE}}|_{Q-pt}\right]^{-1} = \frac{V_A}{I_{CQ}}
$$

5

Current-voltage Relationships for MOSFET

Current-voltage Relationships for MOSFET (Cont)

Conduction Parameters

• NMOSFET:
$$
K_n = \frac{W\mu_n C_{ox}}{2L} = \frac{k_n}{2} \cdot \frac{W}{L}
$$

• **PMOSFET:**
$$
K_p = \frac{W\mu_p C_{ox}}{2L} = \frac{k_p}{2} \cdot \frac{W}{L}
$$

where: $C_{ox} = \varepsilon_{ox}/t_{ox}$ =

is the oxide capacitance per unit area

Current-voltage Relationships of MOSFET (Cont)

 mobility of electrons μ_p mobility of holes oxide permittivity oxide **^t**hickness channel **W**idth channel **L**ength

 μ _n

 $\pmb{\mathcal{E}_{ox}}$

 t_{ox}

W

L

 k_n $=$ μ_n C_{ox} process conduction parameter (provided by manufacturer for ^a particular process)

 The channel geometry, i.e. **width-to-length ratio (***W/L***)**, is ^a variable in the design of MOSFETs that **can be utilized to produce specific current-voltage characteristics** in MOSFET circuits.

Small-signal Hybrid- Equivalent Circuit of MOSFET

Expanded small-signal equivalent circuit, including output resistance, for NMOS transistor.

Small-signal Hybrid-π Equivalent Circuit of MOSFET (Cont)

• **Transconductance:**

$$
g_m = \frac{\partial i_D}{\partial v_{GS}} \Big|_{v_{GS} = V_{GSQ} = const} = 2K_n \Big(V_{GSQ} - V_{TN} \Big) = 2\sqrt{K_n I_{DQ}}
$$

• **Small-signal transistor output resistance:**

$$
r_o = \left[\frac{\partial i_D}{\partial v_{DS}}\right]^{-1} I_{v_{GS} = V_{GSQ} = const} = \left[\lambda K_n \left(V_{GSQ} - V_{TN}\right)^2\right]^{-1} \approx \left[\lambda I_{DQ}\right]^{-1}
$$

Note: The small-signal model of ^a PMOS transistor is the same as in <u>previous figure</u> but with all ac voltage polarities and current directions reversed. All the parameter equations **stated above** still apply for the PMOS transistor.

Finite Output Resistance

This effect is included in the drain current equation:

$$
i_D = K_n \left[(v_{GS} - V_{TN})^2 (1 + \lambda v_{DS}) \right]
$$

Output resistance,

$$
r_o = \left[\frac{\partial i_o}{\partial v_{DS}}\right]^{-1} I_{v_{GS} = const} \approx \frac{1}{\lambda I_{DQ}} = \frac{V_A}{I_{DQ}}
$$

where $I_{DQ}^{}$ = quiescent drain current.

Note: $V_{\!A}$ is analogous to Early voltage of a BJT.