
Name:	Dr JBO
Student ID Number:	Model Answer
Section: 02 A/B	
Lecturer: Dr. Jamaludin Bin Omar	

EEEB2014/EEEB273 - Quiz 2 . SEMESTER 1, ACADEMIC YEAR 2019/2020 Date: 3 July 2019 Time: 15 minutes

Question:

Refer to Figure 1. $V^+ = +5$ V and $V^- = -5$ V. Assume $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = 50$ for all transistors in the circuit.

For $R_C = 2.2 \text{ k}\Omega$ and $v_{CM} = v_{B1} = v_{B2} = 0.8 \text{ V}$, determine the value of I_Q such that $V_{CE1} = 2.5 \text{ V}$. Write your answers clearly using PEN with **enough accuracy** and proper **Units** for the parameters. [10 marks]

 $i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$ $i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26mV$$

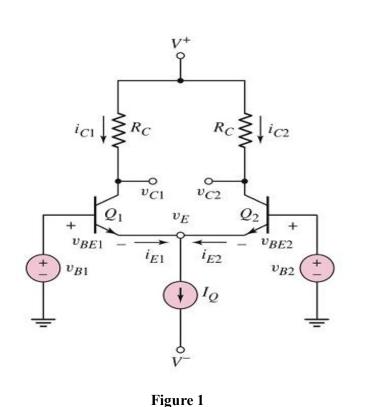
Figure 1

Answer:

$$v_{C1} = v_{B1} - V_{BE1}(\text{on}) + V_{CE1}$$
 [2]
= 0.8 - 0.7 + 2.5 = 2.6 V [1]

$$\begin{array}{ll} v_{C1} &= V^{+} - i_{C1} R_{C} \\ i_{C1} &= (V^{+} - v_{C1}) / R_{C} \\ &= (5 - 2.6) / 2.2 k \\ \end{array}$$
[2]

When $v_{B1} = v_{B2} = 0.8$ V and $\beta = 50$: $i_{C1} = i_{C2}$ and $i_{E1} = i_{E2} = ((1+\beta)/\beta) i_{C1}$ [2] $i_{E1} = i_{E2} = (51/50)(1.09 \text{ m}) = 1.11 \text{ mA}$ [1] $I_Q = i_{E1} + i_{E2} = 2.22 \text{ mA}$ [1]


Name:	Dr JBO
Student ID Number:	Model Answer
Section: 02 A/B	
Lecturer: Dr. Jamaludin Bin Omar	

EEEB2014/EEEB273 - Quiz 2 , SEMESTER 1, ACADEMIC YEAR 2019/2020 Date: 3 July 2019 Time: 15 minutes

Question:

Refer to Figure 1. $V^+ = +5.5$ V and $V^- = -5.5$ V. Assume $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = 40$ for all transistors in the circuit.

For $R_C = 2.4 \text{ k}\Omega$ and $v_{CM} = v_{B1} = v_{B2} = 0.9 \text{ V}$, determine the value of I_Q such that $V_{CE2} = 2.6 \text{ V}$. Write your answers clearly using PEN with enough accuracy and proper Units for the parameters. [10 marks]

 $i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$ $i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

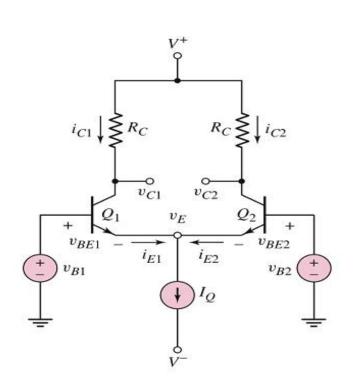
$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26mV$$

Answer:

$$v_{C2} = v_{B2} - V_{BE2}(\text{on}) + V_{CE2}$$
[2]
= 0.9 - 0.7 + 2.6 = 2.8 V [1]

$$\begin{array}{ll} v_{C2} &= V^+ - i_{C2} R_C \\ i_{C2} &= (V^+ - v_{C2}) / R_C \\ &= (5.5 - 2.8) / 2.4 k \\ \end{array}$$
[2]

When
$$v_{B1} = v_{B2} = 0.9$$
 V and $\beta = 40$:
 $i_{C2} = i_{C1}$ and $i_{E1} = i_{E2} = ((1+\beta)/\beta) i_{C1}$ [2]
 $i_{E1} = i_{E2} = (41/40)(1.125m) = 1.153 \text{ mA}$ [1]
 $I_Q = i_{E1} + i_{E2} = 2.306 \text{ mA}$ [1]


Name:	Dr JBO
Student ID Number:	Model Answer
Section: 02 A/B	
Lecturer: Dr. Jamaludin Bin Omar	

EEEB2014/EEEB273 - Quiz 2 ; SEMESTER 1, ACADEMIC YEAR 2019/2020 Date: 3 July 2019 Time: 15 minutes

Question:

Refer to Figure 1. $V^+ = +5.5$ V and $V^- = -5.5$ V. Assume $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = 40$ for all transistors in the circuit.

For $R_C = 2.6 \text{ k}\Omega$ and $v_{CM} = v_{B1} = v_{B2} = 0.4 \text{ V}$, determine the value of I_Q such that $V_{CE1} = 2.2 \text{ V}$. Write your answers clearly using PEN with enough accuracy and proper Units for the parameters. [10 marks]

 $i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

 $i_C = I_S e^{v_{BE}/V_T};$ npn

;Small signal

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26mV$$

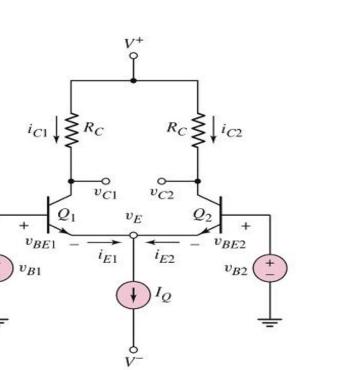
Figure 1

Answer:

$$v_{C1} = v_{B1} - V_{BE1}(\text{on}) + V_{CE1}$$
[2]
= 0.4 - 0.7 + 2.2 = 1.9 V [1]

$$\begin{array}{ll} v_{C1} &= V^{+} - i_{C1} R_{C} \\ i_{C1} &= (V^{+} - v_{C1}) / R_{C} \\ &= (5.5 - 1.9) / 2.6 k \\ \end{array}$$
[2]

When
$$v_{B1} = v_{B2} = 0.4$$
 V and $\beta = 40$:
 $i_{C1} = i_{C2}$ and $i_{E1} = i_{E2} = ((1+\beta)/\beta) i_{C1}$ [2]
 $i_{E1} = i_{E2} = (41/40)(1.385m) = 1.419 mA$ [1]
 $I_Q = i_{E1} + i_{E2} = 2.838 mA$ [1]


Name:	Dr JBO	
Student ID Number:	Model Answer	
Section: 02 A/B		
Lecturer: Dr. Jamaludin Bin Omar		

EEEB2014/EEEB273 - Quiz 2 : SEMESTER 1, ACADEMIC YEAR 2019/2020 Date: 3 July 2019 Time: 15 minutes

Question:

Refer to Figure 1. $V^+ = +5$ V and $V^- = -5$ V. Assume $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = 45$ for all transistors in the circuit.

For $R_C = 2.5 \text{ k}\Omega$ and $v_{CM} = v_{B1} = v_{B2} = 0.6 \text{ V}$, determine the value of I_Q such that $V_{CE2} = 2.4 \text{ V}$. Write your answers clearly using PEN with enough accuracy and proper Units for the parameters. [10 marks]

 $i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$ $i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26mV$$

Answer:

$$v_{C2} = v_{B2} - V_{BE2}(\text{on}) + V_{CE2}$$
[2]
= 0.6 - 0.7 + 2.4 = 2.3 V [1]

Figure 1

$$\begin{array}{ll} v_{C2} &= V^+ - i_{C2} R_C \\ i_{C2} &= (V^+ - v_{C2})/R_C \\ &= (5 - 2.3)/2.5 k \\ \end{array}$$
[2]

When
$$v_{B1} = v_{B2} = 0.6$$
 V and $\beta = 45$:
 $i_{C2} = i_{C1}$ and $i_{E1} = i_{E2} = ((1+\beta)/\beta) i_{C1}$ [2
 $i_{E1} = i_{E2} = (46/45)(1.08m) = 1.104$ mA [1]
 $I_Q = i_{E1} + i_{E2} = 2.208$ mA [1]