Name:

Student ID Number:

Section Number: 01/02/03 A/B

Lecturer: Dr Fazrena Azlee/ Dr Jamaludin/

Dr Ahmad Wafi

Table Number:

College of Engineering Department of Electrical and Electronics Engineering

Test 2

SEMESTER 1, ACADEMIC YEAR 2019/2020

Subject Code	•	EEEB2014/EEEB273
Course Title	:	Electronics Analysis & Design II
Date	:	17 August 2019
Time Allowed	:	2 hours

Instructions to the candidates:

- 1. Write your Name and Student ID Number. Indicate your Section Number and Lecturerøs Name. Write also your Table Number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS. Show clearly all your calculations. Every value must be written with its correct Unit.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question	Q1	Q1	Q2	Q2	Q3	Q4	Q4	Total
Number	(abc)	(d)	(a)	(b)	(ab)	(a)	(b)	
Marks								

BASIC FORMULA FOR TRANSISTOR

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$ $g_m = \frac{I_{CQ}}{V_T}$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $r_o = \frac{V_A}{I_{CQ}}$ $V_T = 26 \text{ mV}$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_n I_{DQ}}$$
; N - MOSFET
 $g_m = 2\sqrt{K_p I_{DQ}}$; P - MOSFET
 $r_o \cong \frac{1}{\lambda I_{DQ}}$

Quadratic formula :

$$Ax^{2} + Bx + C = 0 \quad \rightarrow \quad x = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}$$

QUESTION 1 [30 marks]

The differential amplifier with active load shown in Figure 1 has a pair of npn bipolar differential amplifier as input devices and a pair of pnp bipolar connected as an active load. It is given that $V^+ = 5 \text{ V}$, V = -5 V, and $I_Q = 0.4 \text{ mA}$. The transistor parameters are shown in Table 1 below.

npn transistor	pnp transistor
$\beta_n = 200$	$\beta_p = 150$
V_{BE} (on)= 0.67 V	<i>V_{EB}</i> (on)=0.65 V
$V_{An} = 100 \text{ V}$	$V_{Ap} = 70 \text{ V}$

Table 1: BJT parameters

- (a) **Calculate** the voltages V_{EC4} and V_{CE2} such that the DC voltages are balanced. It is given that $v_{B1} = v_{B2} = 0.$ [8 marks]
- (b) Find the open-circuit differential-mode voltage gain, A_d . [6 marks]
- (c) Calculate the value of a load resistance R_L connected to the output v_0 if the differential mode voltage gain A_d is to be reduced to 90% of the open-circuit gain. [6 marks]
- (d) Draw pnp bipolar differential amplifier with npn two-transistor active load. The current source I_Q is implemented with a Widlar current source. Label the diagram clearly, showing all necessary currents, resistors, and BJTs used in the circuit. [10 marks]

Answers for Question 1

Answers for Question 1 (Continued)

QUESTION 2 [35 marks]

(a) Consider an NMOS differential amplifier with cascode active load, where the bias current (I_Q) is generated using a Wilson Current Mirror. Draw the NMOS cascode active load differential amplifier. Label M_1 and M_2 for differential pair, $M_3 - M_6$ for load and $M_7 - M_9$ for current biasing circuit. Also clearly label the input (v_I, v_2) and output v_o . [8 Marks]

Answers for Question 2(a)

- (b) Consider the differential amplifier circuit in Figure 2. All the NMOS transistors have the same $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 2 \text{ V}$, and $\lambda_n = 0.015 \text{ V}^{-1}$. The active load transistors are matched with parameters $K_p = 0.1 \text{ mA/V}^2$, $V_{TP} = -2 \text{ V}$, and $\lambda_p = 0.02 \text{ V}^{-1}$. The biasing current, I_Q is 12.8 mA.
 - (i) Calculate the **output resistance** $\mathbf{R}_{\mathbf{0}}$ of the differential amplifier [5 marks]
 - (ii) Calculate the **open circuit differential-mode gain** [5 marks]
 - (iii) The output of the amplifier is connected with $10k\Omega$ load. Find the differential mode voltage gain. [5 marks]
 - (iv) The Common-Mode Rejection Ratio (CMRR) was measured to be 27.7 dB. Using CMRR equation, calculate the common-mode voltage gain, A_{CM} of the amplifier?

[5 marks]

(v) Calculate the output voltage, v_o if the differential input voltage is $v_I = 10.5 \sin (\omega t) V$ and $v_2 = -9.5 \sin (\omega t) V$. [7 marks]

Figure 2

Answers for Question 2(b)

QUESTION 3 [20 marks]

The circuit in Figure 3 shows a simple multi-stage BJT op-amp, consisting of 3 different stages and bias circuit. It is given that $V_{BE}(on) = 0.6 \text{ V}$, $V_A = 120 \text{ V}$, and $\beta = 120$ for all transistors. Assume $I_{C7} = I_Q = 45 \mu \text{A}$. Also, the output voltage, $v_o = 0 \text{V}$ for $v_1 = v_2 = 0 \text{V}$.

- (a) Calculate the input resistance (R_i) and the load resistance (R_{L7}) for the Darlington Pair in the gain stage as indicated in the Figure 3. [15 marks]
- (b) **Calculate** the voltage gain of the gain stage (A_2) , where $A_2 = v_{03}/v_{02}$ is derived from the following relationships:

 $v_{O3} = I_{C7} (r_{o7} || R_{L7})$ $v_{O2} = I_{B6} R_i$ [5 marks] **Answers for Question 3**

QUESTION 4 [15 marks]

- (a) Compare the performance of both Class-A and Class-B output stages in terms of power conversion efficiency, η.
 [3 marks]
- (b) Consider the Class-A emitter-follower circuit shown in Figure 4. Study the Figure 4 thoroughly. Assume all transistors are matched with $V_{BE}(on) = 0.6$ V, $V_{CE}(sat) = 0.2$ V, and $V_A = \infty$. Neglect base currents.

Figure 4

- (i) Find the value of *Iq*.
- (ii) For $v_0 = 0$ V, calculate the power dissipated individually in transistor Q_1 , Q_2 , and Q_3 , and also the power dissipated in resistor *R*. [6 marks]
- (iii) **Determine** the power conversion efficiency (η) for a symmetrical sine-wave output voltage (v_0) with peak value of 4 V. [4 marks]

[2 marks]

Answers for Question 4

This is extra page for answers. Please indicate question number clearly.