

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER I 2010/2011

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) & Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: 31 October 2010
TIME	: 9.00 am – 12.00 pm (3 hours)

INSTRUCTIONS TO CANDIDATES:

- 1. This question paper contains **Six** (6) questions in **Twelve** (12) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided.
- 4. Write answer to each question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.
- 6. Write all your answers using pen. **DO NOT USE PENCIL** except for the diagram

THIS QUESTION PAPER CONSISTS OF 12 PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [16 marks]

- (a) Figure 1a shows a pnp current source with transistor parameters $\beta = \infty$, $V_A = 450$ V, and $V_{EB}(\text{on}) = 0.7$ V. Study Figure 1a carefully.
 - (i) **Design** the circuit such that $I_{REF} = 1.5$ mA.

[3 marks]

(ii) What is the value of I_0 ?

[3 marks]

(iii) Find the output resistance (R_0) of the current source.

[2 marks]

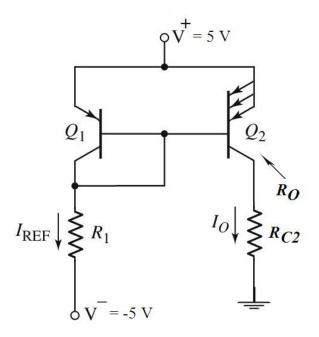


Figure 1a

(b) For a MOSFET current source shown in **Figure 1b**, find the width-to-length ratio (W/L) for all the transistors in the circuit. Given $I_{REF} = 100 \ \mu\text{A}$, $I_O = 60 \ \mu\text{A}$, and V_{DS2} (sat) = 0.4 V. Transistor parameters are $k'_n = 100 \ \mu\text{A}/\text{V}^2$, $V_{TN} = 0.4 \text{ V}$ and $\lambda = 0$.

[8 marks]

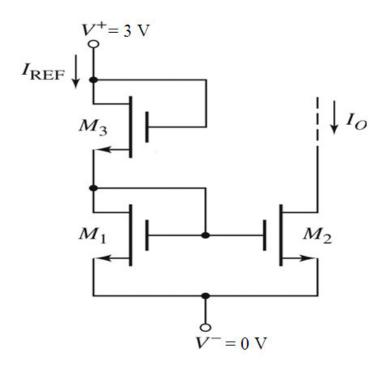


Figure 1b

Question 2 [18 marks]

- (a) Consider the BJT differential amplifier in Figure 2a. The circuit and transistor parameters are V⁺ = 10 V, V⁻ = -10 V, β = 100, V_T = 26 mV, I_Q = 1 mA, and early voltage V_A = ∞ .
 - (i) **Redesign** the circuit such that the differential-mode output voltage of $v_{c2} = 8$ V when a differential-mode input voltage of $v_d = 0.05$ V is applied.

[4 marks]

(ii) **Determine** the differential-mode input resistance.

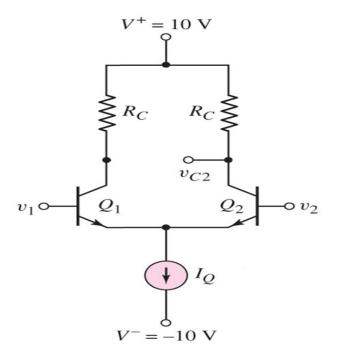
[2 marks]

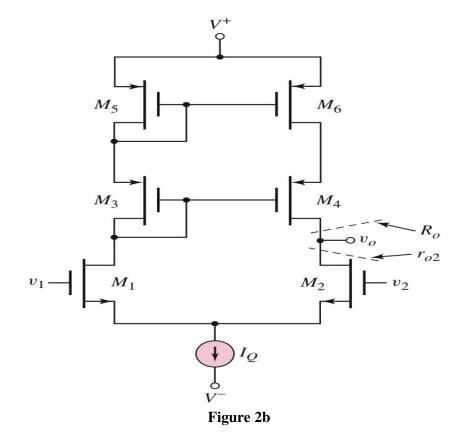
(iii) **Determine** the **CMRR** when the common-mode voltage gain (A_{cm}) = -0.2

[2 marks]

(iv) Suggest a practical method to increase the differential-mode voltage gain, draw the suggested circuit diagram.

[3 marks]




Figure 2a

- (b) The MOSFET differential amplifier with cascode active load shown in Figure 2b is to be designed to achieve the desired differential-mode voltage gain. The circuits parameters are to be $V^+ = 10 V$, $V^- = -10 V$, and $I_Q = 0.4 mA$. The NMOS transistors parameters are $\lambda_n = 0.02 V^{-1}$, $k'_n = 100 \mu A/V^2$, $V_{TN} = 1 V$ and transconductance $g_m = 0.5 mA/V$. The PMOS transistors parameters are $\lambda_p = 0.01 V^{-1}$, $k'_p = 200 \mu A/V^2$, $V_{TP} = -1 V$ and the transconductance $g_m = 0.5 mA/V$.
 - (i) **Determine** the output resistance of the amplifier.

[4 marks]

(ii) **Determine** the differential-mode voltage gain.

[3 marks]

Question 3 [16 marks]

Consider the circuit shown in Figure 3. The circuit and transistor parameters are V⁺ = 12 V, V⁻ = -12 V, V_{GS4} = 3.37 V, $\lambda = \infty$, K_n = 0.2 mA/V², and V_{TN} = 1 V.

(i) **Calculate** the output voltage v_{02} and v_{03} .

[6 marks]

(ii) **Calculate** the overall voltage gain (v_{03}/v_d) .

[6 marks]

(iii) **Determine** V_{GS2} and the maximum common-mode input voltage $(v_{CM}(\max))$ of M_2 .

[4 marks]

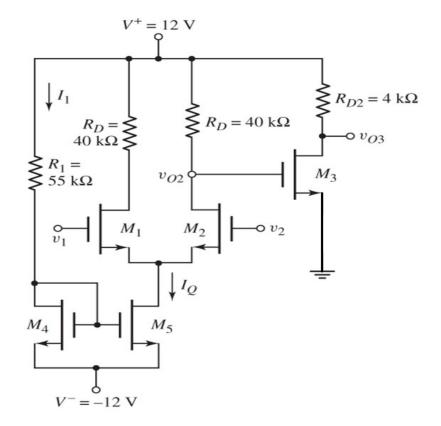


Figure 3

Question 4 [17 marks]

- (a) Figure 4a shows a basic complimentary push-pull output stage circuit. Assume the B-E cut-in voltage of 0.6 V such that v_0 remains zero for the interval -0.6 V $\leq v_I \leq 0.6$ V.
 - (i) Sketch the voltage transfer characteristic of the circuit. Indicate when Q_n is conducting and when it is not conducting.

[3 marks]

(ii) Sketch the current i_{Cn} for two input cycles corresponds to a sinusoidal input voltage $v_I = V_p \sin \alpha t$ (V).

[4 marks]

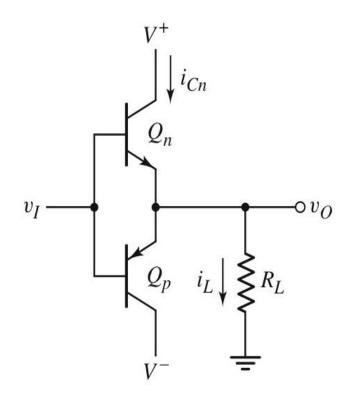


Figure 4a

- (b) Consider the circuit in Figure 4b. The circuit parameters are $V_{CC} = 12$ V, $R_L = 100\Omega$, and Q_n and Q_p are matched with $I_S = 4 \times 10^{-13}$ A. Let $V_{BB} = 1.2$ V, and $\beta >> 1$.
 - (i) For the case of the input voltage $v_I = 0$, calculate the quiescent collector currents, i_{Cn} and i_{Cp} , and the power dissipated in transistors Q_p and Q_n . [3 marks]
 - (ii) What is the maximum amplitude of the output voltage, v_0 , and the corresponding maximum power that can be delivered to the load?

[2 marks]

(iii) For the case of $v_0 = -4 \sin \omega t$ (V), determine i_L, i_{Cn}, i_{Cp} , and v_I .

[5 marks]

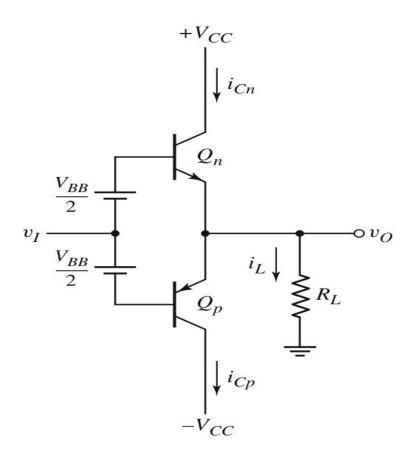


Figure 4b

Question 5 [17 marks]

(a) Figure 5a shows reference circuit and gain stage of 741 op-amp. Transistors Q_{12} and Q_{13} form a current mirror, and Q_{13B} has a scale factor 0.70 times that of Q_{12} . I_{REF} is given as 0.72 mA. Assume $V_{BE} = 0.6$ V and $\beta = 200$ for npn transistors. Find I_{C16} .

[7 marks]

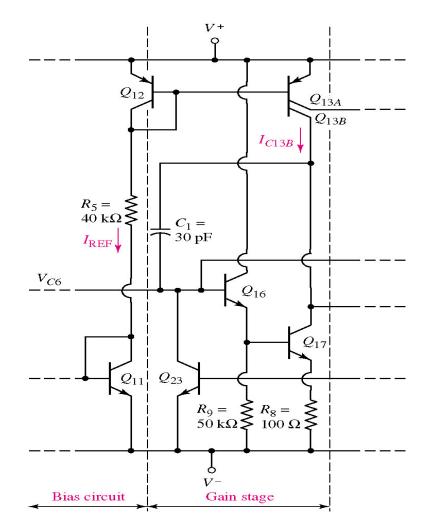


Figure 5a

- (b) A simple CMOS op-amp circuit as shown in **Figure 5b** is biased with $I_Q = 200 \,\mu\text{A}$. The transistor parameters are $k'_n = 100 \,\mu\text{A}/\text{V}^2$, $k'_p = 40 \,\mu\text{A}/\text{V}^2$, $V_{TN} = 0.4 \,\text{V}$, $V_{TP} = -0.4 \,\text{V}$, and $\lambda_n = \lambda_p = 0$. The transistor width-to-length ratios are $(W/L)_1 = (W/L)_2 = 20$, $(W/L)_3 = 50$, and $(W/L)_4 = 40$.
 - (i) **Design** the circuit (i.e. find the values of R_{D1} , R_{D2} , and R_S) such that $I_{D3} = 150 \ \mu\text{A}$, $I_{D4} = 200 \ \mu\text{A}$, and $v_o = 0$ for $v_1 = v_2 = 0$.

[6 marks]

(ii) Find the overall small-signal voltage gain if the gain of the gain stage is **-19.21**.

[4 marks]

Figure 5b

Question 6 [16 marks]

(a) State four (4) applications of an ideal operational amplifier.

[4 marks]

(b) A general output equation for a difference amplifier is

$$v_O = A_d v_d + A_{cm} v_{cm}$$

For the difference amplifier in Figure 6a, the circuit parameters are $R_1 = R_3 =$ 10 k Ω , $R_2 =$ 100 k Ω , and $R_4 =$ 110 k Ω and the output voltage equation is as follows:

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{R_{4} / R_{3}}{1 + R_{4} / R_{3}}\right) v_{I2} - \left(\frac{R_{2}}{R_{1}}\right) v_{I1}$$

where

$$v_{I1} = v_{cm} - \frac{v_d}{2}$$

and

$$v_{I2} = v_{cm} + \frac{v_d}{2}$$

Find A_d , A_{cm} , and calculate the *CMRR* in dB.

[6 marks]

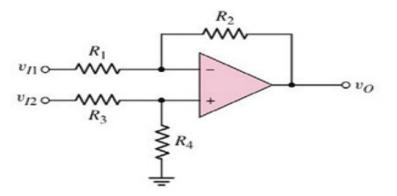


Figure 6a

(c) Consider the two inverting op-amp circuit connected in cascade as shown in **Figure 6b**. Let $R_1 = 20 \text{ k}\Omega$, $R_2 = 160 \text{ k}\Omega$, $R_3 = 10 \text{ k}\Omega$, and $R_4 = 80 \text{ k}\Omega$. Find v_0/v_I for the circuit.

[6 marks]

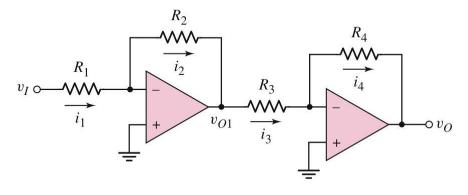


Figure 6b

-END OF QUESTION PAPER-