Student ID Number:

Section: 01A / 01B

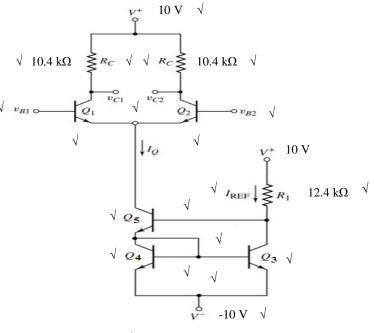
Lecturer: Dr. Jamaludin Bin Omar

SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 18 August 2010

Question:

EEEB273 - Quiz 3

Draw and label clearly a complete circuit for a BJT differential amplifier that is biased with a Wilson current source at a constant current of **1.5 mA**. The BJT differential amplifier has a differential gain for the one-sided output (A_d) of 150. Power supplies for V^+ and V^- are +10 V and -10 V, respectively. Assume $\beta = 100$ and V_{BE} (on) = 0.7 V for all BJT in the circuit.


[10 marks] Hints: You are required to **determine** the value for R_1 in the Wilson current source, and the value for R_C in the BJT differential amplifier. [5 marks]

Answer:

I _{REF}	$= (V^+ - V_{BE3} - V_{BE5} - V^-) / (R_1) \approx I_Q$	[1 mark]
R_1	$= (V^{+} - V_{BE3} - V_{BE5} - V^{-}) / (I_{Q})$	[1 mark]
	$= (10-0.7-0.7-(-10)) / (1.5m) = 12.4 \text{ k}\Omega$	[1/2 mark]

[Question Set 1]

A_d	$= (g_m R_C)/2$	
R_C	$= (2 A_d) / g_m$	[1 mark]
g_m	$= I_Q / (2V_T) = (1.5m)/(2x26m) = 28.846 \text{ mA/V}$	[1 mark]
R_C	$=(2x150)/(28.846m) = 10.4 \text{ k}\Omega$	[1/2 mark]

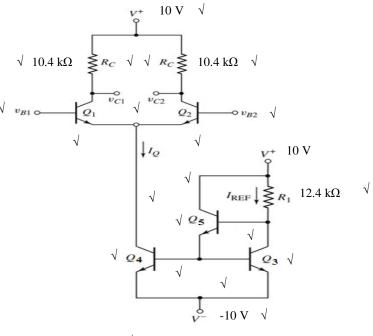
Student ID Number:

Section: 01A/01B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 3 [Question Set 2] SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 18 August 2010

Question:


Draw and label clearly a complete circuit for a BJT differential amplifier that is biased with a basic 3-transistor current source at a constant current of **1.5 mA**. The BJT differential amplifier has a differential gain for the one-sided output (A_d) of 150. Power supplies for V^+ and V^- are +10 V and -10 V, respectively. Assume $\beta = 100$ and V_{BE} (on) = 0.7 V for all BJT in the circuit. [10 marks]

Hints: You are required to **determine** the value for \mathbf{R}_1 in the basic 3-transistor current source, and the value for \mathbf{R}_C in the BJT differential amplifier. [5 marks]

Answer:

I _{REF}	$= (V^+ - V_{BE3} - V_{BE5} - V^-) / (R_I) \approx I_Q$	[1 mark]
R_1	$= (V^+ - V_{BE3} - V_{BE5} - V^-) / (I_Q)$	[1 mark]
	$= (10-0.7-0.7-(-10)) / (1.5m) = 12.4 \text{ k}\Omega$	[1/2 mark]

A_d	$= (g_m R_C)/2$	
R_C	$= (2 A_d) / g_m$	[1 mark]
g_m	$= I_Q / (2V_T) = (1.5m)/(2x26m) = 28.846 \text{ mA/V}$	[1 mark]
R_C	$=(2x150)/(28.846m) = 10.4 \text{ k}\Omega$	[1/2 mark]

Student ID Number:

Section: 05A / 05B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 3 [Question Set 1] SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 18 August 2010

Question:

Draw and label clearly a complete circuit for a BJT differential amplifier that is biased with a basic 3-transistor current source at a constant current of **1.2 mA**. The BJT differential amplifier has a differential gain for the one-sided output (A_d) of 150. Power supplies for V^+ and V^- are +12 V and -12 V, respectively. Assume $\beta = 100$ and V_{BE} (on) = 0.7 V for all BJT in the circuit.

[10 marks] *Hints: You are required to determine the value for* R_1 *in the basic 3-transistor current source, and the value for* R_C *in the BJT differential amplifier.* [5 marks]

Answer:

I _{REF}	$= (V^+ - V_{BE3} - V_{BE5} - V^-) / (R_1) \approx I_Q$	[1 mark]
R_1	$= (V^{+} - V_{BE3} - V_{BE5} - V^{-}) / (I_{Q})$	[1 mark]
	$= (12-0.7-0.7-(-12)) / (1.2m) = 18.83 \text{ k}\Omega$	[1/2 mark]

A_d	$= (g_m R_C)/2$	
R_C	$= (2 A_d) / g_m$	[1 mark]
g_m	$= I_Q / (2V_T) = (1.2m)/(2x26m) = 23.077 mA/V$	[1 mark]
R_C	$=(2x150)/(23.077m) = 13.0 \text{ k}\Omega$	[1/2 mark]

[10 marks]

Student ID Number:

Section: 05A / 05B

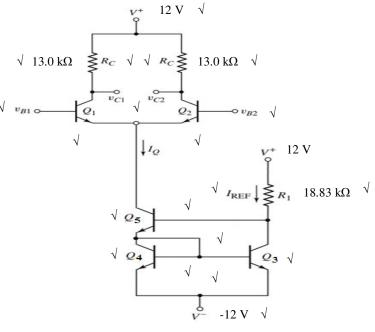
Lecturer: Dr. Jamaludin Bin Omar

SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 18 August 2010

EEEB273 - Quiz 3

Question:

Draw and label clearly a complete circuit for a BJT differential amplifier that is biased with a Wilson current source at a constant current of **1.2 mA**. The BJT differential amplifier has a differential gain for the one-sided output (A_d) of 150. Power supplies for V^+ and V^- are +12 V and -12 V, respectively. Assume $\beta = 100$ and V_{BE} (on) = 0.7 V for all BJT in the circuit.


Hints: You are required to **determine** the value for R_1 in the Wilson current source, and the value for R_C in the BJT differential amplifier. [5 marks]

Answer:

I _{REF}	$= (V^+ - V_{BE3} - V_{BE5} - V^-) / (R_1) \approx I_Q$	[1 mark]
R_1	$= (V^{+} - V_{BE3} - V_{BE5} - V^{-}) / (I_{Q})$	[1 mark]
	$= (12-0.7-0.7-(-12)) / (1.2m) = 18.83 \text{ k}\Omega$	[1/2 mark]

[Question Set 2]

A_d	$=(g_m R_C)/2$	
R_C	$= (2 A_d) / g_m$	[1 mark]
g_m	$= I_Q / (2V_T) = (1.2m)/(2x26m) = 23.077 \text{ mA/V}$	[1 mark]
R_C	$=(2x150)/(23.077m) = 13.0 \text{ k}\Omega$	[1/2 mark]

