Lecturer: Dr. Jamaludin Bin Omar

Student ID Number: Section: 01A/01B

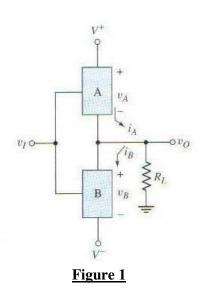
Name:

EEEB273 - Quiz 5 [Question Set 1] SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 22 September 2010

Question:

Figure 1 shows an idealized class-B output stage. (The effective turn-on voltages of devices A and B are zero, and the effective "saturation" voltages of v_A and v_B are zero.) Given that V^+ and V^- are +10 V and -10 V, respectively. Assume a symmetrical sine wave is produced at the output.

(a) What is the peak output voltage at maximum power conversion efficiency?


[3 marks]

Dr JBO - Model Answer

- (b) What is the peak output voltage when each device dissipates the maximum power? [3 marks]
- (c) If the maximum allowed power dissipation in each device is 2 W and the output voltage is at its maximum value, what is the permitted value of $R_{\rm L}$?

[4 marks]

(a) At maximum power conversion efficiency V_p (max) = V^+ = 10 V	[2] [1]
(b) Maximum power dissipation occurs when $V_p = (2 V^+) / \pi$ $= (2^*10) / \pi$ = 6.366 V	[1] [1] [1]
(c) Maximum power dissipation occurs when $P(\max) = (V^+)^2 / (\pi^2 R_L)$ $R_L = (V^+)^2 / (\pi^2 P(\max))$ $= (10)^2 / (\pi^2 * 2)$ $= 5.07 \Omega$	[1] [1] [1] [1]

Name: Dr JBO - Model Answer

Student ID Number:

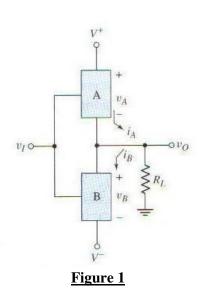
Section: 01A/01B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 5 [Question Set 2] SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 22 September 2010

Question:

Figure 1 shows an idealized class-B output stage. (The effective turn-on voltages of devices A and B are zero, and the effective "saturation" voltages of v_A and v_B are zero.) Given that V^+ and V^- are +8 V and -8 V, respectively. Assume a symmetrical sine wave is produced at the output.


(a) What is the peak output voltage at maximum power conversion efficiency?

[3 marks]

- (b) What is the peak output voltage when each device dissipates the maximum power? [3 marks]
- (c) If the maximum allowed power dissipation in each device is **3** W and the output voltage is at its maximum value, what is the permitted value of R_L ?

[4 marks]

(a) At maximum power conversion efficiency V_p (max) = V^+ = 8 V	[2] [1]
(b)	
Maximum power dissipation occurs when $V_p = (2 V^+) / \pi$ $= (2^*8) / \pi$ = 5.093 V	[1] [1] [1]
(c) Maximum power dissipation occurs when $P(\max) = (V^{+})^2 / (\pi^2 R_L)$ $R_L = (V^{+})^2 / (\pi^2 P(\max))$ $= (8)^2 / (\pi^2 * 3)$ $= 2.16 \Omega$	[1] [1] [1] [1]

Name: **Dr JBO - Model Answer**

Student ID Number:

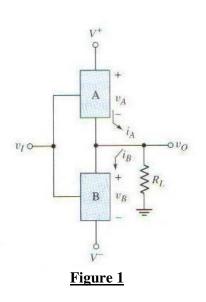
Section: 05A / 05B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 5 [Question Set 1] SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 22 September 2010

Question:

Figure 1 shows an idealized class-B output stage. (The effective turn-on voltages of devices A and B are zero, and the effective "saturation" voltages of v_A and v_B are zero.) Given that V^+ and V^- are +10 V and -10 V, respectively. Assume a symmetrical sine wave is produced at the output.


(a) What is the peak output voltage at maximum power conversion efficiency?

[3 marks]

- (b) What is the peak output voltage when each device dissipates the maximum power? [3 marks]
- (c) If the maximum allowed power dissipation in each device is 3.5 W and the output voltage is at its maximum value, what is the permitted value of R_L ?

[4 marks]

(a) At maximum power conversion efficiency V_p (max) = V^+ = 10 V	[2] [1]
(b) Maximum power dissipation occurs when $V_p = (2 V^+) / \pi$ $= (2^*10) / \pi$ = 6.366 V	[1] [1] [1]
(c) Maximum power dissipation occurs when $P(\max) = (V^+)^2 / (\pi^2 R_L)$ $R_L = (V^+)^2 / (\pi^2 P(\max))$ $= (10)^2 / (\pi^2 * 3.5)$ $= 2.89 \Omega$	[1] [1] [1] [1]

Name: **Dr JBO - Model Answer**

Student ID Number:

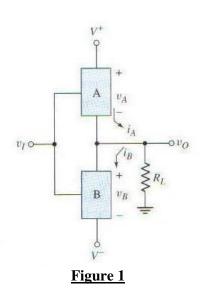
Section: 05A / 05B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 5 [Question Set 2] SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 22 September 2010

Question:

Figure 1 shows an idealized class-B output stage. (The effective turn-on voltages of devices A and B are zero, and the effective "saturation" voltages of v_A and v_B are zero.) Given that V^+ and V^- are +7.5 V and -7.5 V, respectively. Assume a symmetrical sine wave is produced at the output.


(a) What is the peak output voltage at maximum power conversion efficiency?

[3 marks]

- (b) What is the peak output voltage when each device dissipates the maximum power? [3 marks]
- (c) If the maximum allowed power dissipation in each device is 2.5 W and the output voltage is at its maximum value, what is the permitted value of R_L ?

[4 marks]

(a) At maximum power conversion efficiency V_p (max) = V^+ = 7.5 V	[2] [1]
(b) Maximum power dissipation occurs when $V_p = (2 V^+) / \pi$	[1]
$= (2*7.5) / \pi$ = 4.775 V (c)	[1] [1]
Maximum power dissipation occurs when	
$P(\max) = (V^+)^2 / (\pi^2 R_L)$	[1]
$R_L = (V^+)^2 / (\pi^2 P(\max))$	[1]
$= (7.5)^2 / (\pi^2 * 2.5)$	[1]
$= 2.28 \Omega$	[1]

