

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER II 2010 / 2011

SUBJECT CODE

: EEEB273

SUBJECT : ELECTRONIC ANALYSIS AND DESIGN II

DATE : March 2011

-- MODEL ANSWERS --

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **Four** (4) questions in **Seven** (7) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided.
- 4. Write answer to each question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.

THIS QUESTION PAPER CONSISTS OF 7 PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [15 marks]

(a) For a BJT two-transistor current source, the transistor parameters are:

 $V_{BE(on)}$ =0.7 V, β =120, and V_{AN} =100 V. The bias voltage is V⁺=5V and V⁻= -5V.

- (i) **Design** the circuit such that $I_o = 0.50$ mA when $V_{CE2}=0.7$ V.
- (ii) What is the **change in** I_o as V_{CE2} varies between 0.7 V and 7 V?

[8 marks]

Answers:

(i)
$$I_{REF} = I_o \left[1 + \frac{2}{\beta} \right] \left[\frac{1 + \frac{V_{CE2}}{V_A}}{1 + \frac{V_{CE2}}{V_A}} \right] = 0.51 \, mA$$
 [2]

$$R_{1} = \frac{V^{+} - V_{BE(on)} - V^{-}}{I_{REF}} = 18.24k\Omega$$
 [2]

(ii)
$$\frac{\Delta I_o}{\Delta V_{CE2}} = \frac{1}{r_o}$$
 [1]

$$r_{o} = \frac{v_{A}}{I_{CQ}} = \frac{v_{A}}{I_{o}} = 200k$$
 [2]

$$\Delta I_o = \frac{6.3}{200k} = 31.5 \mu A$$
 [1]

(b) Refer to Figure 1. All the transistors are identical. The transistor parameters are: $\beta = 200, V_A = \infty, V_{BE(on)} = 0.7 \text{ V}.$ Calculate V_{CE4} .

Hint: The current source equation is $I_{REF} = I_O (1 + [2/\beta(1+\beta_3)]).$

[7 marks]

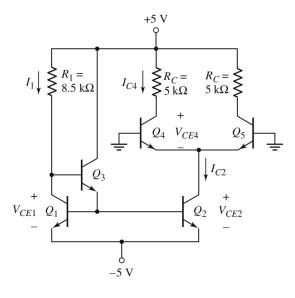


Figure 1

Answer:

$I_1 = [V^+ - V^ 2V_{BE(on)}]/R1 = [5 - (-5) - 2(0.7)]/8.5k = 1.0118 \text{ mA}$	[2]
$I_{C2} = 1.0118 \text{ mA}$	[1]
$V_{E4} = 0 - V_{BE4} = -0.7V$	[1]
$I_{C4} = \frac{1}{2} I_{C2} = 0.5050 \text{ mA}$	[1]
$V_{CE4} = V^+ - I_{C4}R_C - V_{E4} = 5 - (0.506)(5) - (-0.7) = 3.17 V$	[2]

Question 2 [15 marks]

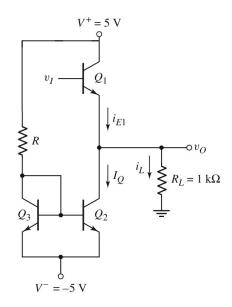
(a) **Describe how** class-A, class-B, and class-AB output stages are different?

[3 marks]

Answers:

- (i) Class-A, class-B, and class-AB output stages are different according to the percent (%) of time the output transistors are conducting (**turned on**), as follows:
 - Class A: Output transistor is *biased* at a quiescent current I_Q and conducts for the *entire cycle* of the input signal.
 [1]
 - □ **Class B**: Output transistor conducts for only *one-half* of each sinewave input cycle. [1]
 - Class AB: Output transistor biased at a small quiescent current I_Q , and conducts for *slightly more than half* a cycle. [1]

- (b) A class-A emitter follower biased with a constant-current source is shown in Figure 2. Study Figure 2 carefully. The transistor parameters are: $\beta = 200$, $V_{BE} = 0.7$ V, and $V_{CE}(\text{sat}) = 0.2$ V. Neglecting base currents:
 - (i) Find the value of I_Q . [3 marks]
 - (ii) **Determine** the value of *R* that will produce the maximum possible output signal swing. [4 marks]
 - (iii) **Calculate** the power conversion efficiency (η) . [5 marks]



Answers:

(i) The value of I_Q is equivalent to the amplitude of the largest negative load current, $i_L = v_{o(min)}/R_L$

$$v_{o(min)} = V^{-} + V_{CE(sat)} = (-5) + (0.2) = -4.8V$$
 [1.5]

$$I_Q = i_{L(max)} = (4.8)/1k = 4.8mA$$
 [1.5]

(ii) $R = (V^+ - V^- - V_{BE})/I_{REF}$ [1]

$$I_{REF} = (1 + 2/\beta) I_Q = (1 + 2/200)(4.8m) = 4.848mA$$
 [2]

$$R = (5 - (-5)^{-0.7})/(4.848m) = 1.9183k\Omega$$
[1]

(iii)
$$\eta = P_L / P_S$$
 [1]

$$P_{L} = \frac{1}{2} \left(V_{p} \right)^{2} / R_{L} = \frac{1}{2} \left(\frac{4.8}{2} \right)^{2} / (1k) = 11.52 \text{mW}$$
 [1.5]

$$P_{S} = 2V_{CC}I_{Q} = 2(5)(4.8m) = 48mW$$
[1.5]

$$\eta = (11.52 / 48) \times 100\% = 24\%$$
[1]

Question 3 [25 marks]

Figure 3 shows a differential amplifier circuit with active loads and current source. The active load transistors are matched with parameters $K_p = 0.1 \text{ mA/V}^2$, $V_{TP} = -2 \text{ V}$ and $\lambda_p = 0.02 \text{ V}^{-1}$. Transistors M_1 and M_2 are driven into saturation with $V_{DS}(\text{sat}) = 1.12 \text{ V}$. Transistors M_5 , M_6 and M_7 are identical. All the NMOS transistors have the same $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 2 \text{ V}$, and $\lambda_n = 0.015 \text{ V}^{-1}$.

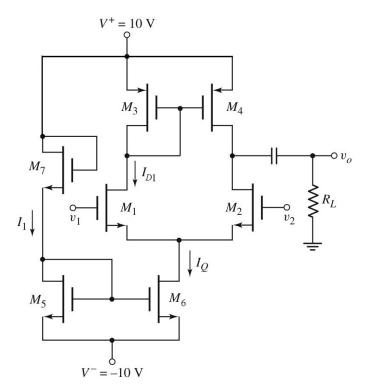


Figure 3

- (i) Determine I_1 , I_Q , and I_{D1} when $v_1 = v_2 = 0$. [8 marks]
- (ii) Determine the **one-sided differential mode voltage gain** for this differential amplifier if $R_L = 100 \text{ k}\Omega$. [10 marks]
- (iii) It is required that the CMRR of this circuit to be 55dB. What is the common mode voltage gain? [3 marks]
- (iv) Suggest ways to improve the CMRR for the circuit in Figure 3.[4 marks]

Answers:

(i) $I_1 = K_n (V_{GS5} - V_{TN})^2 = K_n (V_{GS7} - V_{TN})^2$	[2]
$V_{GS5} = V_{GS7}$	[1]
$V_{GS5} + V_{GS7} = 2 V_{GS5} = V^+ - V^- = 10 - (-10) = 20V$	[1.5]
$V_{\rm GS5}=10V=V_{\rm GS7}$	[0.5]
$I_1 = (0.2m)(10-2)^2 = 12.8mA$	[1]
$I_Q = I_1 = 12.8 mA$	[1]
$I_{D1} = \frac{1}{2}I_Q = 6.4 \text{mA}$	[1]

(ii)
$$v_o = (g_m/2)v_d R_o$$
 therefore $A_d = (g_m/2)R_o$ [1.5]

$$R_{o(diff amp)} = r_{o2} / / r_{o4} / / R_L$$
 [1]

$r_{o2} = 1/(\lambda_n I_{D1}) = 1/(0.02)(6.4m) = 7.812k\Omega$	[1.5]
$r_{o4} = 1/(\lambda_p I_{D1}) = 1/(0.015)(6.4m) = 10.417 k\Omega$	[1.5]
$R_{o(diff amp)} = (7.812k)//(10.417k)//(100k) = 4.273 k\Omega$	[1.5]

$$\begin{array}{ll} g_m = 2\sqrt{(K_n I_{D1})} & [1] \\ A_d = (1/2) \; x \; [2\sqrt{(K_n I_{D1})}] \; x \; R_{o(diff \; amp)} & [1] \\ = [(0.2m)(6.4m)]^{\frac{1}{2}} \; (4.273k) = 4.834 & [1] \end{array}$$

(iii) CMRR =
$$20 \log [A_d/A_{cm}] = 55 dB$$
 [1]

$$A_{cm} = A_d / [\log^{-1}(55/20)] = 8.6 \times 10^{-3}$$
 [2]

(iv)Select two answers:

Increase the current source output resistance.	[2]
Increase the diff amp output resistance by using cascode	active loads. [2]
Reduce the loading effect by increasing load resistance, H	R _L . [2]

Question 4 [20 marks]

A simple bipolar op-amp is designed as shown in **Figure 3a**. Note that biasing for amplifiers in the circuit is provided by two-transistor current mirrors. Study the figure carefully. Neglect base currents. Assume parameters for all transistors are: $V_{BE}(\mathbf{on}) = 0.7\text{V}$, $\beta = 100$, and $V_A = \infty$.

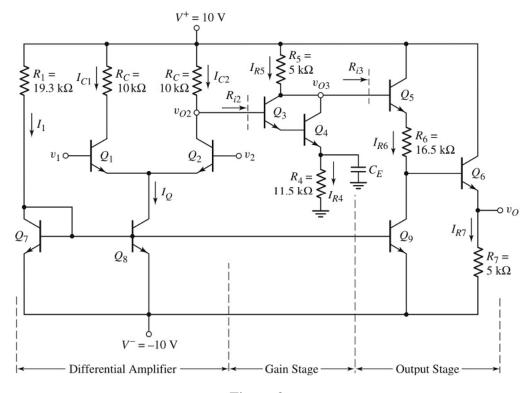


Figure 3a

(i) Referring to Figure 3a find I_1 , I_Q , I_{C2} , v_{O2} , and v_{O3} . [10 marks]

(ii) With small-signal analysis values for A_{d1} , $r_{\pi 3}$, R_{i2} , and A_2 can be found using the following formula:

$$A_{d1} = \left(\frac{V_{o2}}{v_d}\right) = \frac{g_m}{2} \left(R_C \| R_{i2}\right)$$
$$r_{\pi 3} \cong \beta r_{\pi 4}$$
$$R_{i2} = r_{\pi 3} + (1 + \beta) r_{\pi 4}$$
$$A_2 \cong \frac{I_{R4}}{2V_T} \left(R_5\right)$$

Calculate A_{d1} , A_2 , and the total overall small-signal voltage gain, A_d . [10 marks] Answers:

(i)

$$I_{I} = (V^{+} - V_{BE7} - V^{-}) / (R_{I})$$
[1]
= (10-0.7-(-10)) / (19.3k) = 1 mA [1]

I_Q	$= I_1 / (1 + 2/\beta) = 0.9$	0084 mA	[2]
I_{C2}	$= I_Q / 2 = 0.4$	902 mA	[2]
<i>v</i> ₀₂	$= V^{+} - I_{C2} R_{C} = 10 - (0.4902 \text{m})(1)$	0k) = 5.098 V	[2]
I_{R4}	$= (v_{O2} - 2 V_{BE}(\text{on})) / (R_4)$		
	= (5.098 - 1.4) / (11.5k) = 0.3	322 mA	[1/2]
I_{R5}	$\approx I_{R4}$ (neglecting base currents) = 0).322 mA	[1/2]
v ₀₃	$= V^+ - I_{R5} R_5 = 10 - (0.322 \text{m})(5 \text{k})$) = 8.39 V	[1]

OR I_Q	$\approx I_1$ [Since $\beta >> 1$]	= 1 mA	[2]
I_{C2}	$=I_Q/2$	= 0.5 mA	[2]
<i>v</i> ₀₂	$= V^{+} - I_{C2} R_{C} = 10 - (0.4)$	5m)(10k) = 5 V	[2]
I_{R4}	$= (v_{O2} - 2 V_{BE}(\text{on})) / (R_4)$)	
	= (5 - 1.4) / (11.5k)	= 0.313 mA	[1/2]
I_{R5}	$\approx I_{R4}$ (neglecting base cu	rrents) = 0.313 mA	[1/2]
V03	$= V^+ - I_{R5} R_5 = 10 - (0.5)$	313m)(5k) = 8.44 V	[1]

(ii)

Using	$I_{C2} = 0.4902 \text{ mA}, I_{R4} = 0.322 \text{ mA}$:	
A_{d1}	$= (g_m / 2)(R_C \parallel R_{i2})$	
g_m	$= I_{C2} / V_T = (0.4902 \text{mA}) / (26 \text{mV}) = 18.85 \text{ mA/V}$	[1]
$r_{\pi 4}$	$= \beta V_T / I_{R4} = (100 \text{x} 26 \text{m}) / (0.322 \text{m}) = 8.085 \text{ k}\Omega$	[1]
$r_{\pi 3}$	$\approx \beta r_{\pi 4} = 808.5 \text{ k}\Omega$	[1]
R_{i2}	$=r_{\pi 3}+(1+\beta)r_{\pi 4}$	
	$= 808.5 \text{k} + (101)(8.085 \text{k}) = 1621.1 \text{ k}\Omega$	[1]
A_{d1}	$= (18.85 \text{m/2})(10 \text{k} \parallel 1621.1 \text{k}) = 93.67$	[2]
A_2	$\approx (I_{R4}/2V_T) R_5 = (0.322 \text{m}/(2 \text{x} 26 \text{m}))(5 \text{k}) = 30.96$	[2]
A_3	≈1	[1]
A_d	$= A_{d1} A_2 A_3 = 93.67 \times 30.96 \times 1 = 2900$	[1]
		_

OR Using $I_{C2} = 0.5 \text{ mA}, I_{R4} = 0.313 \text{ mA}$: $A_{d1} = (g_m / 2)(R_C \parallel R_{i2})$

g_m	$= I_{C2} / V_T = (0.5 \text{mA}) / (26 \text{mV}) = 19.23 \text{ mA/V}$	[1]
$r_{\pi 4}$	$= \beta V_T / I_{R4} = (100 \text{x} 26 \text{m}) / (0.313 \text{m}) = 8.306 \text{ k}\Omega$	[1]
$r_{\pi 3}$	$\approx \beta r_{\pi 4}$ = 830.6 k Ω	[1]
R_{i2}	$=r_{\pi 3}+(1+\beta)r_{\pi 4}$	
	$= 830.6 k + (101)(8.306 k) = 1669.5 k\Omega$	[1]
A_{d1}	$= (19.23 \text{m}/2)(10 \text{k} \parallel 1669.5 \text{k}) = 95.58$	[2]
A_2	$\approx (I_{R4}/2V_T) R_5 = (0.313 \text{m}/(2 \text{x} 26 \text{m}))(5 \text{k}) = 30$	[2]
A_3	≈ 1	[1]
A_d	$= A_{d1} A_2 A_3 = 95.58 \ge 30 \ge 1 = 2867$	[1]

Question 5 [25 marks]

(a) The summing amplifier as in **Figure 5a** can be used as a digital-to-analog converter (DAC). The analogue output is calculated by using the equation:

$$v_o = -R_F \left[\frac{a_3}{R_3} + \frac{a_2}{R_2} + \frac{a_1}{R_1} + \frac{a_o}{R_o} \right] (V_R)$$

Suppose that we want to convert a 4-bit binary signal $(a_3a_2a_1a_0)$ to its equivalent weight in decimal value. **Design** the circuit such that when switch S_3 only is closed (i.e. resistor R_3 is connected to -5V supply), then $a_3 = 1$, thus an input $a_3a_2a_1a_0 = 1000$ will give $v_0 = 8V$. Similarly, when all switches (i.e. S_0 , S_1 , S_2 , and S_3) are closed, the binary signal $a_3a_2a_1a_0$ combination gives $v_0 = 15V$. Referring to the **Table 1**, verify your design by showing that $a_3a_2a_1a_0$ combination provides the same output as shown.

[12 marks]

Table 1

$a_3 a_2 a_1 a_0$	1000	0100	0010	0001	0110
<i>v</i> ₀ [Volts]	8	4	2	1	6

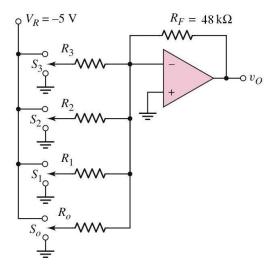


Figure 5a

Answer:

When S₃ is closed:

$v_0 = -R_F[(1/R_3) + (0/R_2) + (0/R_1) + (0/R_0)](V_R)$	[2]
$v_0 = -48k (1/R_3)(-5) = 8$	[1]

$$R_3 = (48k)(5)/8 = 30k\Omega$$
[1]

When S₂ is closed:

$$v_{\rm O} = -R_{\rm F}(1/R_2)(V_{\rm R})$$
 [0.5]

$$v_0 = -48k (1/R_2)(-5) = 4$$
 [0.5]

$$R_2 = (48k)(5)/4 = 60k\Omega$$
[1]

When S₁ is closed:

$$v_{\rm O} = -R_{\rm F}(1/R_1)(V_{\rm R})$$
 [0.5]

$$v_0 = -48k (1/R_1)(-5) = 2$$
 [0.5]

$$\mathbf{R}_1 = (48k)(5)/2 = 120k\Omega$$
[1]

When S₀ is closed:

$$v_{O} = -R_{F}(1/R_{0})(V_{R})$$
 [1]

$$v_0 = -48k (1/R_0)(-5) = 1$$

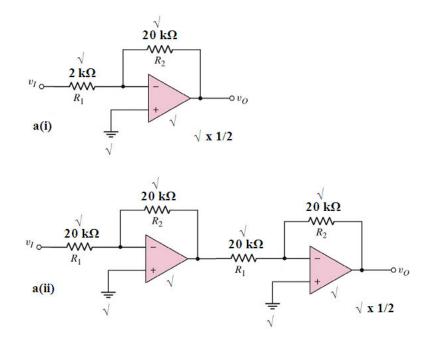
$$R_0 = (48k)(5) = 240k\Omega$$
[1]

Verify: 0110 = 6V [2]

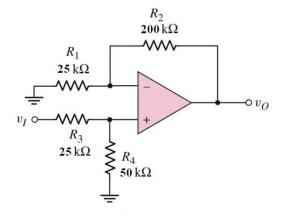
 $\begin{aligned} v_{O} &= -R_{F}[(0/R_{3}) + (1/R_{2}) + (1/R_{1}) + (0/R_{0})](V_{R}) \\ v_{O} &= -48k[(1/60k) + (1/120k)](-5) = (240/60) + (240/120) = 6V \end{aligned}$

- (b) With feedback resistor of 20 k Ω , sketch the following circuits using inverting op-amp configuration.
 - (i) An inverting amplifier with a closed-loop gain of **-10**. [2 marks]
 - (ii) A voltage follower. [4 marks]

Answer:



(c) Find the voltage gain, A_v, for the op-amp in Figure 5b. Assume the op-amp is ideal. [7 marks]



Answer:

VO	$= (1+R_2/R_1)v_2$	[2]
\mathbf{v}_2	$= [R_4/(R_3+R_4)]v_I$	[1]
vo	$= (1 + R_2/R_1) [R_4/(R_3 + R_4)]v_1$	[1]
A_{v}	$= v_0/v_1 \qquad = (1+R_2/R_1) [R_4/(R_3+R_4)]$	[1]
	= [1+(200k/25k)][50k/(50k+25k)] = (9)(2/3) = (9)(2/3)	5 [2]