

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER II 2010 / 2011

SUBJECT CODE : **EEEB273**

SUBJECT : **ELECTRONIC ANALYSIS AND DESIGN II**

DATE : March 2011

-- MODEL ANSWERS --

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **Four** (4) questions in **Seven** (7) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided.
- 4. Write answer to each question on **a new page**.
- 5. For all calculations, assume that $V_T = 26$ mV.

THIS QUESTION PAPER CONSISTS OF 7 PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [15 marks]

(a) For a BJT two-transistor current source, the transistor parameters are:

*V*_{BE(on)}=0.7 V, β =120, and *V_{AN}*=100 V. The bias voltage is V⁺=5V and V = -5V.

- (i) **Design** the circuit such that $I_0 = 0.50$ mA when $V_{CE2} = 0.7$ V.
- (ii) What is the **change** in I_0 as V_{CE2} varies between 0.7 V and 7 V?

[8 marks]

Answers:

(i)
$$
I_{REF} = I_o \left[1 + \frac{2}{\beta} \right] \left[\frac{1 + \frac{V_{CE2}}{V_A}}{1 + \frac{V_{CE2}}{V_A}} \right] = 0.51 \text{ mA}
$$
 [2]

$$
R_1 = \frac{v^+ - v_{BE(on)} - v^-}{l_{REF}} = 18.24k\Omega
$$
 [2]

(ii)
$$
\frac{\Delta I_0}{\Delta V_{CE2}} = \frac{1}{r_0}
$$
 [1]

$$
r_o = \frac{v_A}{t_{eq}} = \frac{v_A}{t_o} = 200k
$$
 [2]

$$
\Delta I_o = \frac{6.3}{200k} = 31.5 \mu A
$$
 [1]

(b) Refer to **Figure 1**. All the transistors are identical. The transistor parameters are: $\beta = 200, V_A = \infty, V_{BE(on)} = 0.7$ V. Calculate V_{CE4} .

Hint: The current source equation is $I_{REF} = I_O (1 + [2/\beta(1+\beta_3)]).$

[7 marks]

Figure 1

Answer:

Question 2 [15 marks]

(a) Describe how class-A, class-B, and class-AB output stages are different?

[3 marks]

Answers:

- (i) Class-A, class-B, and class-AB output stages are different according to the percent (%) of time the output transistors are conducting (**turned on**), as follows:
	- **Class A:** Output transistor is *biased at a quiescent current I^Q* and conducts for the *entire cycle of the input signal*. [1]
	- **Class B**: Output transistor conducts for only *one-half of each sinewave input cycle*. [1]
	- **Class AB:** Output transistor **biased** *at a small quiescent current IQ*, and conducts for *slightly more than half a cycle*. [1]

- **(b) A class-A emitter follower** biased with a constant-current source is shown in **Figure** 2. Study **Figure** 2 carefully. The transistor parameters are: $\beta = 200$, V_{BE} $= 0.7$ **V**, and V_{CE} (sat) $= 0.2$ **V**. Neglecting base currents:
	- (i) **Find** the value of I_Q . [3 marks]
	- (ii) **Determine** the value of *R* that will produce the maximum possible output signal swing. [4 marks]
	- (iii) **Calculate** the power conversion efficiency (η) . [5 marks]

Answers:

(i) The value of I_Q is equivalent to the amplitude of the largest negative load current, $i_L = v_{o(min)}/R_L$

$$
v_{o(min)} = V + V_{CE(sat)} = (-5) + (0.2) = -4.8V
$$
 [1.5]

$$
I_Q = i_{L(max)} = (4.8)/1k = 4.8mA
$$
 [1.5]

(ii) $R = (V^+ - V^- - V_{BE})/I_{REF}$ [1]

$$
I_{REF} = (1 + 2/\beta) I_Q = (1 + 2/200)(4.8m) = 4.848mA
$$
 [2]

$$
R = (5 - (-5)^{-10.7})/(4.848m) = 1.9183k\Omega
$$
 [1]

$$
(iii) \qquad \eta = P_{L} / P_{S} \tag{1}
$$

$$
P_{L} = \frac{1}{2} (V_{p})^{2} / R_{L} = \frac{1}{2} (4.8)^{2} / (1k) = 11.52 \text{mW}
$$
 [1.5]

$$
P_S = 2V_{CC}I_Q = 2(5)(4.8m) = 48mW
$$
 [1.5]

$$
\eta = (11.52 / 48) \times 100\% = 24\%
$$
 [1]

Question 3 [25 marks]

Figure 3 shows a differential amplifier circuit with active loads and current source. The active load transistors are matched with parameters $K_p = 0.1$ mA/V², $V_{TP} = -2$ V and $\lambda_p = 0.02 \text{ V}^{-1}$. Transistors M_1 and M_2 are driven into saturation with $V_{DS}(sat)$ = **1.12 V**. Transistors *M***5**, *M***⁶** and *M***⁷** are identical. All the NMOS transistors have the same $K_n = 0.2$ mA/V², $V_{TN} = 2$ V, and $\lambda_n = 0.015$ V⁻¹.

Figure 3

- (i) Determine I_1 , I_Q , and I_{DI} when $v_1 = v_2 = 0$. [8 marks]
- (ii) Determine the **one-sided differential mode voltage gain** for this differential amplifier if R_L = 100 k Ω . [10 marks]
- (iii) It is required that the **CMRR** of this circuit to be **55dB**. What is the common mode voltage gain? [3 marks]
- (iv) Suggest ways to improve the CMRR for the circuit in **Figure 3**.[4 marks]

Answers:

(ii)
$$
v_o = (g_m/2)v_dR_o
$$
 therefore $A_d = (g_m/2)R_o$ [1.5]

$$
R_{o(diff amp)} = r_{o2}/r_{o4}/R_L
$$
 [1]

$$
g_m = 2\sqrt{(K_n I_{D1})}
$$
\n
$$
A_d = (1/2) \times [2\sqrt{(K_n I_{D1})}] \times R_{o(diff amp)}
$$
\n
$$
= [(0.2m)(6.4m)]^{1/2} (4.273k) = 4.834
$$
\n[1]

$$
(iii) \text{CMRR} = 20 \log \left[\frac{\text{A}_{\text{d}}}{\text{A}_{\text{cm}}} \right] = 55 \text{dB} \tag{1}
$$

$$
A_{cm} = A_d / [log^{-1}(55/20)] = 8.6 \times 10^{-3}
$$
 [2]

(iv)Select two answers:

Question 4 [20 marks]

A simple bipolar op-amp is designed as shown in **Figure 3a**. *Note that biasing for amplifiers in the circuit is provided by two-transistor current mirrors*. Study the figure carefully. Neglect base currents. Assume parameters for all transistors are: V_{BE} (on) = 0.7V, $\beta = 100$, and $V_A = \infty$.

Figure 3a

(i) Referring to **Figure** 3a find I_1 , I_0 , I_{C2} , v_{O2} , and v_{O3} . [10 marks]

(ii) With small-signal analysis values for A_{d1} , $r_{\pi 3}$, R_{i2} , and A_2 can be found using the following formula:

$$
A_{d1} = \left(\frac{V_{o2}}{v_d}\right) = \frac{g_m}{2} \left(R_c \middle\| R_{i2}\right)
$$

\n
$$
r_{\pi 3} \cong \beta r_{\pi 4}
$$

\n
$$
R_{i2} = r_{\pi 3} + (1 + \beta)r_{\pi 4}
$$

\n
$$
A_2 \cong \frac{I_{R4}}{2V_T} \left(R_5\right)
$$

Calculate A_{d1} , A_2 , and the total overall small-signal voltage gain, A_d . [10 marks] **Answers:**

(i)

$$
I_1 = (V^+ - V_{BE7} - V^-) / (R_1)
$$

= (10-0.7-(-10)) / (19.3k) = 1 mA [1]

(ii)

OR Using $I_{C2} = 0.5$ **mA**, $I_{R4} = 0.313$ **mA**: $A_{d1} = (g_m / 2)(R_C || R_i)$

Question 5 [25 marks]

(a) The summing amplifier as in **Figure 5a** can be used as a digital-to-analog converter (DAC). The analogue output is calculated by using the equation:

$$
v_0 = -R_F \left[\frac{a_3}{R_3} + \frac{a_2}{R_2} + \frac{a_1}{R_1} + \frac{a_0}{R_0} \right] (V_R)
$$

Suppose that we want to convert a 4-bit binary signal $(a_3a_2a_1a_0)$ to its equivalent weight in decimal value. **Design** the circuit such that when switch S_3 only is closed (i.e. resistor \mathbb{R}_3 is connected to -5V supply), then $a_3 = 1$, thus an input $a_3a_2a_1a_0 = 1000$ will give $v_0 = 8V$. Similarly, when all switches (i.e. S_0 , S_1 , S_2 , and S_3) are closed, the binary signal $a_3a_2a_1a_0$ combination gives $v_0 = 15V$. Referring to the **Table 1**, verify your design by showing that $a_3a_2a_1a_0$ combination provides the same output as shown.

[12 marks]

Table 1

$a_3a_2a_1a_0$	1000 0100 0010 0001		0110
v_0 [Volts]			

Figure 5a

Answer:

When S_3 is closed:

$$
R_3 = (48k)(5)/8 = 30k\Omega
$$
 [1]

When S_2 is closed:

$$
v_0 = -R_F(1/R_2)(V_R)
$$
 [0.5]

$$
v_0 = -48k (1/R_2)(-5) = 4
$$
 [0.5]

$$
R_2 = (48k)(5)/4 = 60k\Omega
$$
 [1]

When S_1 is closed:

$$
v_0 = -R_F(1/R_1)(V_R)
$$
 [0.5]

$$
v_0 = -48k (1/R_1)(-5) = 2
$$
 [0.5]

$$
R_1 = (48k)(5)/2 = 120k\Omega
$$
 [1]

When S_0 is closed:

$$
v_O = -R_F(1/R_0)(V_R)
$$
 [1]

$$
v_O = -48k (1/R_0)(-5) = 1
$$

$$
R_0 = (48k)(5) = 240k\Omega
$$
 [1]

Verify:
$$
0110 = 6V
$$
 [2]

 $v_O = -R_F[(0/R_3) + (1/R_2) + (1/R_1) + (0/R_0)](V_R)$ $v_O = -48k[(1/60k) + (1/120k)](-5) = (240/60) + (240/120) = 6V$

- **(b)** With **feedback resistor** of 20 $k\Omega$, **sketch** the following circuits using **inverting op-amp** configuration.
(i) An inverting am
	- (i) An inverting amplifier with a closed-loop gain of **-10**. [2 marks]
(ii) A voltage follower. [4 marks]
	- A voltage follower.

Answer:

(c) Find the voltage gain, Av, for the op-amp in **Figure 5b**. Assume the op-amp is ideal. [7 marks]

Answer:

