

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 2 2010 / 2011

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)	
SUBJECT CODE	: EEEB273	
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II	
DATE	: March 2011	
TIME	: 9.00 am – 12.00 pm (3 hours)	

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **Five** (5) questions in **Seven** (7) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided.
- 4. Write answer to each question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [15 marks]

- (a) For a **BJT two-transistor current source**, the transistor parameters are: $V_{BE}(\text{on}) = 0.7 \text{ V}, \beta = 120, \text{ and } V_{AN} = 100 \text{ V}.$ The bias voltage is $V^+ = 5 \text{ V}$ and V = -5 V.
 - (i) **Design** the circuit such that $I_o = 0.50$ mA when $V_{CE2} = 0.7$ V. [4 marks]
 - (ii) What is the **change in** I_o as V_{CE2} varies between 0.7 V and 7 V? [4 marks]
- (b) Refer to Figure 1. All the transistors are identical. The transistor parameters are: $\beta = 200$, $V_A = \infty$, $V_{BE}(\text{on}) = 0.7$ V. Calculate V_{CE4} . [7 marks]

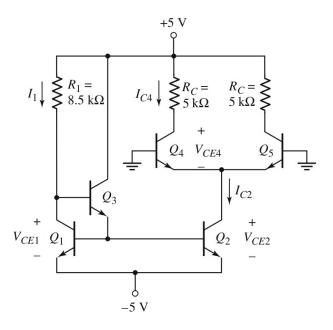


Figure 1

Hint: The current source equation is $I_{REF} = I_O (1 + [2/\beta(1+\beta_3)]).$

Question 2 [15 marks]

(a) **Describe how** class-A, class-B, and class-AB output stages are different?

[3 marks]

(b) A class-A emitter follower biased with a constant-current source is shown in Figure 2. Study Figure 2 carefully. The transistor parameters are: $\beta = 200$, $V_{BE} = 0.7$ V, and $V_{CE}(\text{sat}) = 0.2$ V. Neglecting base currents:

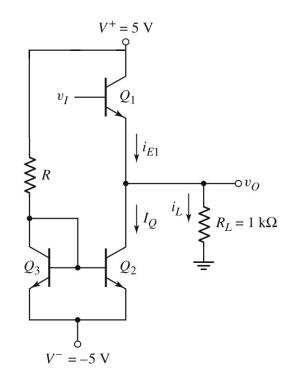


Figure 2

- (i) Find the value of I_Q . [3 marks]
- (ii) Determine the value of *R* that will produce the maximum possible output signal swing. [4 marks]
- (iii) **Calculate** the power conversion efficiency (η). [5 marks]

Question 3 [25 marks]

Figure 3 shows a differential amplifier circuit with active loads and current source. The active load transistors are matched with parameters $K_p = 0.1 \text{ mA/V}^2$, $V_{TP} = -2 \text{ V}$ and $\lambda_p = 0.02 \text{ V}^{-1}$. Transistors M_1 and M_2 are driven into saturation with $V_{DS}(\text{sat}) = 1.12 \text{ V}$. Transistors M_5 , M_6 and M_7 are identical. All the NMOS transistors have the same $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 2 \text{ V}$, and $\lambda_n = 0.015 \text{ V}^{-1}$.

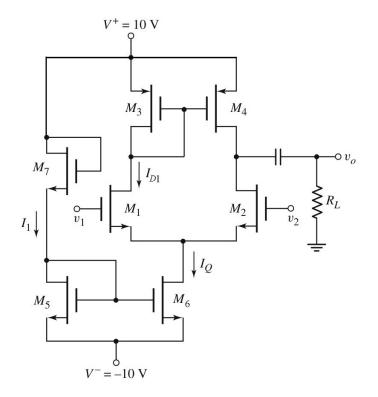


Figure 3

- (i) Determine I_1 , I_2 , and I_{D1} when $v_1 = v_2 = 0$. [8 marks]
- (ii) Determine the one-sided differential mode voltage gain for this differential amplifier if $R_L = 100 \text{ k}\Omega$. [10 marks]
- (iii) It is required that the CMRR of this circuit to be 55dB. Find the common mode voltage gain. [3 marks]
- (iv) Suggest ways to improve the CMRR for the circuit in **Figure 3**. [4 marks]

Question 4 [20 marks]

A simple bipolar op-amp is designed as shown in **Figure 4**. *Note that biasing for amplifiers in the circuit is provided by two-transistor current mirrors*. Study the figure carefully. Neglect base currents. Assume parameters for all transistors are: $V_{BE}(\mathbf{on}) = 0.7 \text{ V}$, $\beta = 100$, and $V_A = \infty$.

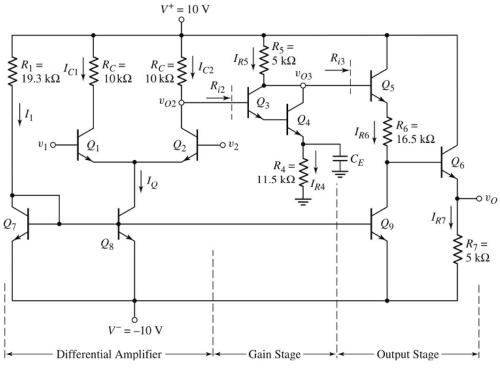


Figure 4

(i) Referring to Figure 4 find I_1, I_2, I_{C2}, v_{O2} , and v_{O3} . [10 marks]

(ii) With small-signal analysis values for A_{d1} , $r_{\pi 3}$, R_{i2} , and A_2 can be found using the following formula:

$$A_{d1} = \left(\frac{V_{o2}}{v_d}\right) = \frac{g_m}{2} \left(R_C \| R_{i2}\right)$$
$$r_{\pi 3} \cong \beta r_{\pi 4}$$
$$R_{i2} = r_{\pi 3} + (1+\beta)r_{\pi 4}$$
$$A_2 \cong \frac{I_{R4}}{2V_T} \left(R_5\right)$$

Calculate A_{d1} , A_2 , and the total overall small-signal voltage gain, A_d .

[10 marks]

Question 5 [25 marks]

(a) The summing amplifier as in **Figure 5a** can be used as a digital-to-analog converter (DAC). The analogue output is calculated by using the equation:

$$v_{o} = -R_{F} \left[\frac{a_{3}}{R_{3}} + \frac{a_{2}}{R_{2}} + \frac{a_{1}}{R_{1}} + \frac{a_{o}}{R_{o}} \right] (V_{K})$$

Suppose we want to convert a 4-bit binary signal $(a_3a_2a_1a_0)$ to its equivalent weight in decimal. **Design** the circuit such that when switch S_3 only is closed (i.e. resistor R_3 is connected to -5 V supply), then $a_3 = 1$, thus an input $a_3a_2a_1a_0 = 1000$ will give $v_0 = 8V$. Similarly, when all switches (i.e. S_0 , S_1 , S_2 , and S_3) are closed, the binary signal $a_3a_2a_1a_0$ combination gives $v_0 = 15V$. Referring to the **Table 1**, verify your design by showing that $a_3a_2a_1a_0$ combinations provide the same output as shown.

[12 marks]

Table 1

$a_3a_2a_1a_0$	1000	0100	0010	0001	0110
<i>v</i> ₀ [Volts]	8	4	2	1	6

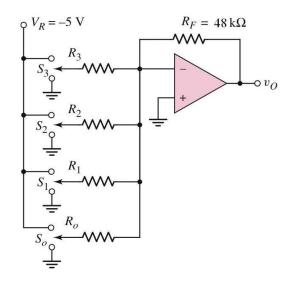


Figure 5a

- (b) With feedback resistor of 20 k Ω , sketch the following circuits using inverting op-amp configuration:
 - (i) An inverting amplifier with a closed-loop gain of **-10**. [2 marks]
 - (ii) A voltage follower. [4 marks]
- (c) Find the voltage gain, A_v , for the op-amp in Figure 5b. Assume the op-amp is ideal.

[7 marks]

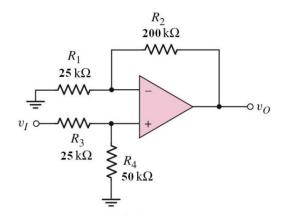


Figure 5b

-END OF QUESTION PAPER-