EEEB273 - Quiz 4 [Question Set 1] SEMESTER 2, ACADEMIC YEAR 2010/2011 Date: 8 February 2011

Name:	Dr JBO	
Student ID Number:	Model answer	
Section: 01A/01B		
Lecturer: Dr. Jamaludin Bin Omar		

Question:

The differential amplifier as shown in **Figure 1** has a pair of PMOS transistors as input devices and a pair of NMOS transistors connected as an active load. The circuit is biased with $I_Q = 0.2$ mA, and the transistor parameters are: $K_n = K_p = 0.1$ mA/V², $\lambda_n = 0.01$ V⁻¹, $\lambda_p = 0.015$ V⁻¹, $V_{TN} = 1$ V, and $V_{TP} = -1$ V.

(a) Find the open-circuit differential-mode voltage gain, A_d .

[5 marks]

(b) Calculate the output resistance, R_0 , of the circuit.

[5 marks]

Answer:

			$V^{+} = 10 \text{ V}$
(a)	$g_{m2} = g_{m2} =$	$= 2\sqrt{K_p I_{DQ2}} = 2\sqrt{K_p (I_Q/2)}$ = $2\sqrt{(0.1m)(0.1m)} = 0.2mA/V$ [1]	
	r ₀₂	$= 1/(\lambda_p I_{DQ2}) = 1/(\lambda_p (I_Q/2))$ = 1/((0.015)(0.1m)) = 0.667 M\Omega [1]	$v_1 \circ H$ M_1 M_2 $h \circ v_2$
	r ₀₄	$= 1/(\lambda_n I_{DQ4}) = 1/(\lambda_n (I_Q/2))$ = 1/((0.01)(0.1m)) = 1 MΩ [1]	• • • • • • • • • • • • • • • • • • •
	A_d	$= g_{m2}(r_{02} \parallel r_{04}) $ [1]	
		$= (0.2m)(0.667M \parallel 1M) = 80$ [1]	
(b)	<i>r</i> ₀₂	= $1/(\lambda_p I_{DQ2}) = 1/(\lambda_p (I_Q/2))$ = $1/((0.015)(0.1m))$ = 0.667 MΩ [1.5]	$V^{-} = -10 V$ <u>Figure 1</u>
	r ₀₄	$= 1/(\lambda_n I_{DQ4}) = 1/(\lambda_n (I_Q/2))$ = 1/((0.01)(0.1m)) = 1 M\Omega [1.5]	
	R ₀	$= r_{o2} r_{o4}$ = 0.667M 1M = 400 kΩ [2]	

EEEB273 - Quiz 4 [Question Set 2] SEMESTER 2, ACADEMIC YEAR 2010/2011 Date: 8 February 2011

Name:	Dr JBO	
Student ID Number:	Model answer	
Section: 01A / 01B		
Lecturer: Dr. Jamaludin Bin Omar		

Question:

The differential amplifier as shown in **Figure 1** has a pair of PMOS transistors as input devices and a pair of NMOS transistors connected as an active load. The circuit is biased with $I_Q = 0.3$ mA, and the transistor parameters are: $K_n = K_p = 0.1 \text{ mA/V}^2$, $\lambda_n = 0.015 \text{ V}^{-1}$, $\lambda_p = 0.01 \text{ V}^{-1}$, $V_{TN} = 1 \text{ V}$, and $V_{TP} = -1 \text{ V}$.

(c) Find the open-circuit differential-mode voltage gain, A_d .

[5 marks]

(d) Calculate the output resistance, R_0 , of the circuit.

[5 marks]

Answer:

(a)

$$g_{m2} = 2\sqrt{K_{p}I_{DQ2}} = 2\sqrt{K_{p}(I_{Q}/2)}$$

$$g_{m2} = 2\sqrt{(0.1m)(0.15m)} = 0.245mA/V$$
(1)

$$r_{o2} = 1/(\lambda_{p}I_{DQ2}) = 1/(\lambda_{p}(I_{Q}/2))$$

$$= 1/((0.01)(0.15m)) = 0.667 M\Omega$$
(1)

$$A_{d} = g_{m2}(r_{o2} \parallel r_{o4})$$

$$= (0.245m)(0.667M \parallel 0.444M)$$

$$= 65.3$$
(2)
(b)

$$r_{o2} = 1/(\lambda_{p}I_{DQ2}) = 1/(\lambda_{p}(I_{Q}/2))$$

$$= 1/((0.01)(0.15m)) = 0.667 M\Omega$$
(1.5)

$$r_{o4} = 1/(\lambda_{n}I_{DQ4}) = 1/(\lambda_{n}(I_{Q}/2))$$

$$= 1/((0.015)(0.15m)) = 0.444 M\Omega$$
(1.5)

$$R_{O} = r_{o2} \parallel r_{o4}$$

$$= 0.667M \parallel 0.444M = 266.7 k\Omega$$
(2)