Name:Dr JBOStudent ID Number:Model answerSection:01A / 01BLecturer:Dr. Jamaludin Bin Omar

EEEB273 - Quiz 5 [Question Set 1] SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 22 February 2011

Question:

Figure 1

Figure 1 shows a design for a simple bipolar op-amp. *Note that biasing for amplifiers in the circuit is provided by three-transistor current mirrors*. Study the figure carefully. Neglect base currents. Assume parameters for all transistors are: $V_{BE}(\mathbf{on}) = 0.7 \text{ V}$, $\beta = 100$, and $V_A = \infty$.

Calculate I_1 , I_Q , I_{C2} , v_{O2} , and v_{O3} . Show all your calculation clearly in order to get full marks. [10 marks]

Answer: (You may continue your answer in the next page)

I 1	$= (V^{+} - V_{BE10} - V_{BE7} - V^{-}) / (R_{1})$		[1]
	= (10-0.7-0.7-(-10)) / (19.3k)	= 0.9637 mA	[1]
Iq	$= I_1 / (1 + 2/(\beta(1+\beta))) \approx I_1$	= 0.9637 mA	[2]
<i>I</i> _{C2}	$=I_Q/2$	= 0.4818 mA	[2]
<i>v</i> ₀₂	= $V^+ - I_{C2} R_C = 10 - (0.4818 \text{m})(10 \text{k}) = 5.182 \text{ V}$		[2]
I _{R4}	$= (v_{O2} - 2 V_{BE}(on)) / (R_4)$		
	= (5.182 - 1.4) / (11.5k)	= 0.3288 mA	[1/2]
I_{R5}	$\approx I_{R4}$ (neglecting base currents)	= 0.3288 mA	[1/2]
V03	$= V^+ - I_{R5} R_5 = 10 - (0.3288 \text{m})(5\text{k}) = 8.356 \text{ V}$		[1]

Name:Dr JBOStudent ID Number:Model answerSection:01A / 01BLecturer:Dr. Jamaludin Bin Omar

EEEB273 - Quiz 5 [Question Set 2] SEMESTER 1, ACADEMIC YEAR 2010/2011 Date: 22 February 2011

Question:

Figure 1

Figure 1 shows a design for a simple bipolar op-amp. *Note that biasing for amplifiers in the circuit is provided by three-transistor current mirrors*. Study the figure carefully. Neglect base currents. Assume parameters for all transistors are: $V_{BE}(\mathbf{on}) = 0.7 \text{ V}$, $\beta = 100$, and $V_A = \infty$.

Calculate I_1 , I_Q , I_{C2} , v_{O2} , and v_{O3} . Show all your calculation clearly in order to get full marks. [10 marks]

Answer: (You may continue your answer in the next page)

I 1	$= (V^{+} - V_{BE10} - V_{BE7} - V^{-}) / (R_{1})$		[1]
	= (10-0.7-0.7-(-10)) / (16.5k)	= 1.1272 mA	[1]
IQ	$= I_1 / (1 + 2/(\beta(1+\beta))) \approx I_1$	= 1.1272 mA	[2]
<i>I</i> _{C2}	$=I_Q/2$	= 0.5636 mA	[2]
<i>v</i> ₀₂	$= V^+ - I_{C2} R_C = 10 - (0.5636 \text{m})(9.3 \text{k}) = 4.758 \text{ V}$		[2]
I_{R4}	$= (v_{02} - 2 V_{BE}(on)) / (R_4)$		
	= (4.758 – 1.4) / (11.5k)	= 0.292 mA	[1/2]
I_{R5}	$\approx I_{R4}$ (neglecting base currents)	= 0.292 mA	[1/2]
V03	$= V^+ - I_{R5} R_5 = 10 - (0.292 \text{m})(5 \text{k})$	$) = 8.54 \mathrm{V}$	[1]