

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 1 2011 / 2012

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT DATE	: ELECTRONIC ANALYSIS AND DESIGN II : August 2011

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **Six** (6) questions in **Ten** (10) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided.
- 4. Write answer to each question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.

THIS QUESTION PAPER CONSISTS OF TEN (10) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [16 marks]

- (a) **Referring** to the circuits in **Figure 1a**, the transistors in the circuit are identical.
 - (i) For the circuit in Figure 1a (i), show that $I_{REF} \approx (1+4/\beta) I_0$. Label the currents which you use in your equations correctly. (Hints: You may start with I_{E3} and I_{E4} relationship given in the circuit. Note that $I_{B3} \neq I_{B4}$. Assume $\beta^2 \gg 1$).

[4 marks]

(ii) For the circuit in Figure 1a (ii), simplify the circuit and draw the simplified circuit. Using the simplified circuit, derive the ratio of V_x/I_x . Assume that $r_{\pi 4} << r_{O2}$.

Figure 1a (i) BJT Cascode Current Source, and (ii) The Small Signal Equivalent Circuit.

(b) The MOSFET current source circuit in Figure 1b has transistor parameters $k'_n = 80 \ \mu A/V^2$ and $V_{TN} = 0.5 \ V$. Design the current source so that $I_O = 50 \mu A$ when $I_{REF} = 150 \mu A$ and V_{D2} at -1.2V. [8 marks]

Figure 1b

Question 2 [16 marks]

Consider the circuit shown in Figure 2. The bias voltages are +3 V and -3 V. The transistor parameters are $K_{n1} = K_{n2} = 150 \ \mu \text{A/V}^2$, $K_{n3} = K_{n4} = 100 \ \mu \text{A/V}^2$, and $V_{TN} = 0.3 \ \text{V}$ for all transistors.

Figure 2

- (a) Calculate R_1 and R_D for the diff-amp circuit such that $V_{DS1} = V_{DS2} = 3$ V and $I_{D1} = I_{D2} = 60$ μ A when $v_1 = v_2 = -1.5$ V. [8 marks]
- (b) Input v_1 and v_2 are changed from $v_1 = v_2 = -1.5$ V to $v_1 = v_2 = +1.05$ V. Calculate change in V_{DS4} (i.e. ΔV_{DS4}). [4 marks]
- (c) Given that $\lambda_1 = \lambda_2 = 0$ and $\lambda_3 = \lambda_4 = 0.01 \text{ V}^{-1}$. Calculate the change in I_Q (i.e. ΔI_Q) using result from part (b). [4 marks]

Question 3 [16 marks]

(a) The differential amplifier shown in Figure 3a has a three-transistor current mirror connected as an active load. The circuit is connected to power supply voltages of $V^+ = +5$ V and V = -5 V.

Figure 3a

- (i) The dc currents in the BJT differential amplifier must be balanced such that $I_{B5} = I_0$. Explain why this is important in a BJT circuit. [2 marks]
- (ii) **Determine** the relationship between I_0 and I_Q such that the amplifier dc currents are balanced. Calculate the value of I_0 given that $I_Q = 0.2$ mA and $\beta = 100$.

[5 marks]

(b) The circuit in Figure 3b shows a simple multistage BJT op-amp, consisting of four different stages. It is given that for all transistors, $\beta = 100$.

- (i) Name the four stages in the circuit, and indicate which transistors and resistors belonging to each stage. [4 marks]
- (ii) Assuming that for all transistors: $r_o = 500 \text{ k}\Omega$, $g_m = 5 \text{ mA/V}$, $r_\pi = 3 \text{ k}\Omega$, $R_3 = 250 \Omega$, and $R_4 = 10 \text{ k}\Omega$. For Q_7 , the Early voltage V_A is assumed to be infinite. Calculate the small signal input impedance at the collector of Q_7 , i.e. R_{L7} as indicated in the Figure 3b. [5 marks]

Question 4 [16 marks]

The folded cascode CMOS op-amp in Figure 4 is biased such that $I_{\text{REF}} = 50 \ \mu\text{A}$. The circuit is connected to supply voltages of $V^+ = +5 \ \text{V}$ and $V = -5 \ \text{V}$. It is given that the transistor parameters are $k'_n = 40 \ \mu\text{A}/\text{V}^2$, $k'_p = 20 \ \mu\text{A}/\text{V}^2$, $\lambda_n = 0.005 \ \text{V}^{-1}$, $\lambda_p = 0.01 \ \text{V}^{-1}$, and $|V_{\text{T}}| = 1 \ \text{V}$. The transistor aspect ratios are $(W/L)_{1,2,5,6} = 10$, $(W/L)_{3,4,11,12,13} = 5$, and $(W/L)_{7,8,9,10} = 20$.

- (a) **Determine** the dc currents in each transistor in the circuit. [3 marks]
- (b) **Determine** the differential-mode voltage gain of the op-amp. [8 marks]
- (c) Redesign the folded cascode differential amplifier, M_1 and M_2 , such that the differentialmode voltage gain of the op-amp is twice of that calculated in part (b). [5 marks]

Figure 4

Question 5 [16 marks]

Figure 5 shows the output stage for 741 op-amp. Study the Figure 5 carefully.

Figure 5

(a) **Describe** the operation of an **approximate** (i.e. non-ideal) class-B output stage. Assume $V_{BEN}(on) = V_{EBP}(on) = 0.6$ V. You may use appropriate diagrams to help your explanation.

[4 marks]

- (b) What is the class of the output stage (which consists of transistors Q_{14} and Q_{20}) used in the Figure 5? [2 marks]
- (c) **Describe** how **quiescent bias current** for the output transistors Q_{14} and Q_{20} in Figure 5 is established. [2 marks]
- (d) What is the advantage of the output stage given in the Figure 5 compared to an approximate (i.e. non-ideal) class-B output stage? [2 marks]
- (e) For the output stage in the **Figure 5**, assume that reverse saturation currents $I_{S18} = I_{S19} = 10^{-14}$ A. Using $\beta_n = 200$, we can assume that $I_C \approx I_E$ for Q_{18} and Q_{19} . Given that $I_{Bias} = 0.18$ mA. By <u>initially assuming</u> that $V_{BE19} = 0.6$ V, calculate V_{BB} shown in the circuit.

[6 marks]

Question 6 [20 marks]

- (a) List two (2) ideal op-amp characteristics. [2 marks]
- (b) For a summing amplifier using op-amps shown in Figure 6b, use appropriate ideal opamp characteristics and superposition theorem to show that

$$v_O = v_{I1} + v_{I2}$$

when $R_1 = R_2 = R_F = 100 \text{ k}\Omega$. [7 marks]

Figure 6b

(c) Figure 6c shows a design for an instrumentation amplifier using op-amps. In the design, R_{1POT} is a 100 k Ω potentiometer (or a variable resistor) used to provide variable resistance so that differential voltage gain (A_{ν}) of the instrumentation amplifier can be adjustable. With analysis, it can be shown that

$$v_{O} = \frac{R_{4}}{R_{3}} \left(1 + \frac{2R_{2}}{R_{1} + R_{1POT}} \right) (v_{I2} - v_{I1})$$

Figure 6c

(i) What is the name of an amplifier represented by op-amp A_3 in the Figure 6c?

[1 mark]

- (ii) With $R_3 = R_4 = 100 \text{ k}\Omega$, design an instrumentation amplifier using the circuit as shown in the Figure 6c to realize a differential voltage gain (A_ν) adjustable from 10 to 100. (Hints: A_ν is smallest when R_{1POT} is at maximum value, and vice versa. You are required to determine the value of R_1 and R_2 in the circuit). [7 marks]
- (iii) With $v_{I1} = 1.00$ V, $v_{I2} = 1.15$ V, $R_4 = 2 R_3$, R_{1POT} is set at 40 k Ω , and using the values of R_1 and R_2 found in step (ii) above, calculate A_v and v_O .

[3 marks]

-END OF QUESTION PAPER-