Name: **Dr JBO**

Student ID Number: Model Answer

Section: 01A/01B

01B

EEEB273 - Quiz 1 [Question Set 1]

SEMESTER 1, ACADEMIC YEAR 2011/2012

Date: 23 May 2011

Lecturer: Dr. Jamaludin Bin Omar

Question:

Refer to **Figure 1**. All transistors are matched.

The circuit parameters are: $V^+ = 7.5 \text{ V}$ and $V^- = -7.5 \text{ V}$.

The transistor parameters are: $\beta = 100$, V_{BE} (on) = 0.6 V, and $V_A = 150$ V.

Given $I_{B2} = 8 \mu A$.

(a) Design a two-transistor current source using all the parameters given above.

[8 marks]

(b) Find the output resistance (R_0) of the two-transistor current source.

[2 marks]

Show clearly all calculations as marks are given according to this.

Answer:

-		
$I_O = I_{C2}$	$=\beta I_{B2}$	[1]
	$=(100)(8\mu)$	[1]
	= 0.8 mA	[0.5]
I_{REF}	$=I_O(1+2/\beta)$	[1]
	= (0.8m)(1 + 2/100)	[1]
	= 0.816 mA	[0.5]
R_1	$= (V^+ - V_{BE} - V^-) / I_{REF}$	[1.5]
	= (7.5 - 0.6 - (-7.5)) / (0.816m)	
	$= 17.647 \text{ k}\Omega$	[0.5]
R_{O}	$=V_A/I_O$	[1]
	= (150) / (0.8m)	[0.5]
	$= 187.5 \text{ k}\Omega$	[0.5]

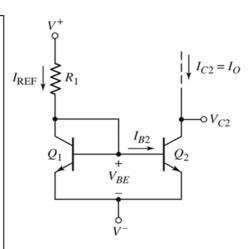


Figure 1

Name: **Dr JBO**

Student ID Number: Model Answer

Section: 05A / 05B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 1 [Question Set 1]

SEMESTER 1, ACADEMIC YEAR 2011/2012

Date: 23 May 2011

Question:

Refer to **Figure 1**. All transistors are matched.

The circuit parameters are: $V^+ = 10 \text{ V}$ and $V^- = -10 \text{ V}$.

The transistor parameters are: $\beta = 120$, V_{BE} (on) = 0.6 V, and $V_A = 100$ V.

Given $I_{B2} = 8 \mu A$.

(c) Design a two-transistor current source using all the parameters given above.

[8 marks]

(d) Find the output resistance (R_0) of the two-transistor current source.

[2 marks]

Show clearly all calculations as marks are given according to this.

Answer:

$I_O = I_{C2}$	$=\beta I_{B2}$	[1]	
	$=(120)(8\mu)$	[1]	
	= 0.96 mA	[0.5]	
I_{REF}	$=I_O(1+2/\beta)$	[1]	
	$= (0.96 \mathrm{m})(1 + 2/120)$	[1]	
	= 0.976 mA	[0.5]	
R_1	$= (V^+ - V_{BE} - V^-) / I_{REF}$	[1.5]	
	= (10 - 0.6 - (-10)) / (0.976m)		[1]
	$= 19.877 \text{ k}\Omega$	[0.5]	
R_O	$=V_A/I_O$	[1]	
	= (100) / (0.96m)	[0.5]	
	$= 104.167 \text{ k}\Omega$	[0.5]	

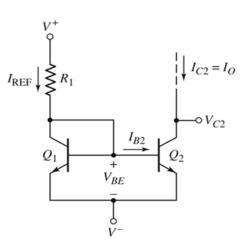


Figure 1

Name: **Dr JBO**

Student ID Number: Model Answer

Section: 05A / 05B

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 1 [Question Set 2] SEMESTER 1, ACADEMIC YEAR 2011/2012

Date: 23 May 2011

Question:

Refer to **Figure 1**. All transistors are matched.

The circuit parameters are: $V^+ = 7.5 \text{ V}$ and $V^- = -7.5 \text{ V}$.

The transistor parameters are: $\beta = 100$, V_{BE} (on) = 0.6 V, and $V_A = 120$ V.

Given $I_{B2} = 10 \,\mu\text{A}$.

(e) Design a two-transistor current source using all the parameters given above.

[8 marks]

(f) Find the output resistance (R_0) of the two-transistor current source.

[2 marks]

Show clearly all calculations as marks are given according to this.

Answer:

$I_O = I_{C2}$	= βI_{B2} = $(100)(10\mu)$ = 1.0 mA	[1] [1] [0.5]	
I _{REF}	= $I_O (1 + 2/\beta)$ = $(1.0 \text{m})(1 + 2/100)$ = 1.02 mA	[1] [1] [0.5]	
R_1	= $(V^+ - V_{BE} - V^-) / I_{REF}$ = $(7.5 - 0.6 - (-7.5)) / (1.0)$ = $14.118 \text{ k}\Omega$	[1.5] (2m) [0.5]	[1]
Ro	= V_A / I_O = (120) / (1.0m) = 120.0 k Ω	[1] [0.5] [0.5]	

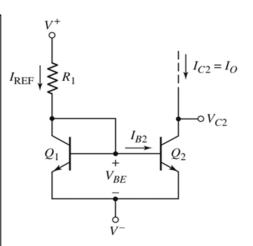


Figure 1