Name:	Dr JBO
Student ID Number:	Model answer
Section: 01A/01B	
Lecturer: Dr. Jamalu	ıdin Bin Omar

[Question Set 1] EEEB273 - Quiz 2 SEMESTER 1, ACADEMIC YEAR 2011/2012 Date: 1 June 2011

Question:

For all BJT current sources mentioned in this question, all transistors are matched and have same parameters. The transistor parameters are: $\beta = 50$, V_{BE} (on) = 0.6 V, and $V_A = 150$ V. The circuit parameters are: $V^+ = 7.5$ V, $V^- = -7.5$ V and $R_I = 10$ k Ω . Calculate output current (I_0) and output resistance (R_0) for every BJT current source given in Table 1 and fill in the Table 1. Show all calculations and do not forget to put proper Units to I_0 and R_0 in the Table 1.

Answer:

Table 1		
BJT current source	Output current, I_0	Output resistance, R_O
Three-transistor current source	1.379 mA	108.781 kΩ
Wilson current source	1.379 mA	2.719 ΜΩ
Cascode current source	1.278 mA	5.869 ΜΩ
$[0.5 \text{ marks}] \ge 6 \text{ blanks in the Table 1} = [3 \text{ marks}]$		

Which current source has the most stable I_0 ? Answer: <u>Wilson/Cascode</u> [1 mark]

Calculations for I_0 and R_0 for every BJT current source:

 $[1 \text{ mark}] \ge 6 = [6 \text{ marks}]$

Three-transistor current source	Wilson current source	Cascode current source
$I_{REF} = (V^+ - 2 V_{BE} - V^-)/R_1 = (7.5 - 2x0.6 - (-7.5))/(10k) = 1.380 \text{ mA}$		
$I_{O} = I_{REF} / (1 + 2/(\beta(1+\beta)))$	$I_{O} = I_{REF} / (1 + 2/(\beta(2+\beta)))$	$I_O = I_{REF} / (1 + 4/\beta)$
= (1.380m)/(1+2/(150x151))	= (1.380 m)/(1+2/(150 x 152))	= (1.380m)/(1+4/(150))
= 1.379 mA	= 1.379 mA	= 1.278 mA
$r_{O2} = V_A / I_O$	$r_{O3} = V_A / I_O$	$r_{O4} = V_A / I_O$
= 150/(1.379m)	= 150/(1.379m)	= 150/(1.278m)
$= 108.781 \text{ k}\Omega$	$= 108.779 \text{ k}\Omega$	$= 117.391 \text{ k}\Omega$
$R_O = r_{O2}$	$R_{O} = (\beta r_{O3})/2$	$R_O = \beta r_{O4}$
$= 108.781 \text{ k}\Omega$	$=(150 \times 108.779 \text{k})/2$	$= 150 \times 117.391 \text{k}$
	= 2.719 MΩ	= 5.869 MΩ

Name:	Dr JBO
Student ID Number:	Model answer
Section: 05A / 05B	
Lecturer: Dr. Jamalu	ıdin Bin Omar

[Question Set 1] EEEB273 - Quiz 2 SEMESTER 1, ACADEMIC YEAR 2011/2012 Date: 2 June 2011

Question:

For all BJT current sources mentioned in this question, all transistors are matched and have same parameters. The transistor parameters are: $\beta = 75$, V_{BE} (on) = 0.6 V, and $V_A = 120$ V. The circuit parameters are: $V^+ = 10$ V, $V^- = -10$ V and $R_I = 15$ k Ω . Calculate output current (I_0) and output resistance (R_0) for every BJT current source mentioned in Table 1 and fill in the Table 1. Show all calculations and do not forget to put proper Units to I_0 and R_0 in the Table 1.

Answer:

	Table 1	
BJT current source	Output current, I_0	Output resistance, R_0
Three-transistor current source	1.253 mA	95.778 kΩ
Wilson current source	1.253 mA	3.591 ΜΩ
Cascode current source	1.190 mA	7.563 ΜΩ
$[0.5 \text{ marks}] \ge 6 \text{ blanks in the Table 1} = [3 \text{ marks}]$		

Which current source has the most stable I_0 ? Answer: <u>Wilson/Cascode</u> [1 mark]

Calculations for I_0 and R_0 for every BJT current source:

 $[1 \text{ mark}] \ge 6 = [6 \text{ marks}]$

Three-transistor current source	Wilson current source	Cascode current source
$I_{REF} = (V^+ - 2V_{BE} - V^-)/R_1 = (10 - 2x0.6 - (-10))/(15k) = 1.253 \text{ mA}$		
$I_{O} = I_{REF} / (1 + 2/(\beta(1+\beta)))$	$I_{O} = I_{REF} / (1 + 2/(\beta(2+\beta)))$	$I_O = I_{REF} / (1 + 4/\beta)$
= (1.253 m)/(1+2/(120 x 121))	= (1.253 m)/(1+2/(120 x 122))	= (1.253 m)/(1+4/(120))
= 1.253 mA	= 1.253 mA	= 1.190 mA
$r_{O2} = V_A / I_O$	$r_{O3} = V_A / I_O$	$r_{O4} = V_A / I_O$
= 120/(1.253m)	= 120/(1.253m)	= 120/(1.190m)
$= 95.778 \text{ k}\Omega$	$= 95.778 \text{ k}\Omega$	$= 100.851 \text{ k}\Omega$
$R_O = r_{O2}$	$\boldsymbol{R}_{\boldsymbol{O}} = (\boldsymbol{\beta} \boldsymbol{r}_{\boldsymbol{O}3})/2$	$R_O = \beta r_{O4}$
= 95.778 kΩ	=(120x95.778k)/2	$= 120 \times 100.851 \text{k}$
	= 3.591 MΩ	= 7.563 MΩ

Name:	Dr JBO
Student ID Number:	Model answer
Section: 05A / 05B	
Lecturer: Dr. Jamalu	ıdin Bin Omar

[Question Set 2] EEEB273 - Quiz 2 SEMESTER 1, ACADEMIC YEAR 2011/2012 Date: 2 June 2011

Question:

For all BJT current sources mentioned in this question, all transistors are matched and have same parameters. The transistor parameters are: $\beta = 75$, V_{BE} (on) = 0.6 V, and $V_A = 100$ V. The circuit parameters are: $V^+ = 7.5$ V, $V^- = -7.5$ V and $R_I = 12$ k Ω . Calculate output current (I_0) and output resistance (R_0) for every BJT current source mentioned in Table 1 and fill in the Table 1. Show all calculations and do not forget to put proper Units to I_0 and R_0 in the Table 1.

Answer:

	Table 1	
BJT current source	Output current, I_0	Output resistance, R_0
Three-transistor current source	1.150 mA	86.987 kΩ
Wilson current source	1.150 mA	3.262 ΜΩ
Cascode current source	1.092 mA	6.869 MΩ
$[0.5 \text{ marks}] \ge 6 \text{ blanks in the Table 1} = [3 \text{ marks}]$		

Which current source has the most stable I_0 ? Answer: <u>Wilson/Cascode</u> [1 mark]

Calculations for I_0 and R_0 for every BJT current source:

 $[1 \text{ mark}] \ge 6 = [6 \text{ marks}]$

Three-transistor current source	Wilson current source	Cascode current source
$I_{REF} = (V^+ - 2 V_{BE} - V^-)/R_I = (7.5 - 2x0.6 - (-7.5))/(12k) = 1.150 \text{ mA}$		
$I_{O} = I_{REF} / (1 + 2/(\beta(1+\beta)))$	$I_{O} = I_{REF} / (1 + 2/(\beta(2+\beta)))$	$I_O = I_{REF} / (1 + 4/\beta)$
= (1.150 m)/(1+2/(75 x 76))	= (1.150 m)/(1+2/(75 x 77))	= (1.150 m)/(1+4/(75))
= 1.150 mA	= 1.150 mA	= 1.092 mA
$r_{O2} = V_A / I_O$	$r_{O3} = V_A / I_O$	$r_{O4} = V_A / I_O$
=75/(1.150m)	= 75/(1.150m)	=75/(1.092m)
$= 86.987 \text{ k}\Omega$	$= 86.987 \text{ k}\Omega$	= 91.594 kΩ
D – r	$\mathbf{P} = (\mathbf{R}_{\mathbf{T}})/2$	$\mathbf{P} = \mathbf{\rho}_{\mathbf{r}}$
$R_0 = r_{02}$	$\boldsymbol{R}_{\boldsymbol{O}} = (\boldsymbol{\beta} \boldsymbol{r}_{\boldsymbol{O3}})/2$	$R_0 = \beta r_{04}$
$= 86.987 \text{ k}\Omega$	=(75x86.987k)/2	=75x91.594k
	$= 3.262 \text{ M}\Omega$	$= 6.869 \text{ M}\Omega$

Name:	Dr JBO
Student ID Number:	Model answer
Section: 05A / 05B	
Lecturer: Dr. Jamalu	ıdin Bin Omar

[Question Set 3] EEEB273 - Quiz 2 SEMESTER 1, ACADEMIC YEAR 2011/2012 Date: 2 June 2011

Question:

For all BJT current sources mentioned in this question, all transistors are matched and have same parameters. The transistor parameters are: $\beta = 70$, V_{BE} (on) = 0.6 V, and $V_A = 100$ V. The circuit parameters are: $V^+ = 10$ V, $V^- = -10$ V and $R_I = 18$ k Ω . Calculate output current (I_0) and output resistance (R_0) for every BJT current source mentioned in Table 1 and fill in the Table 1. Show all calculations and do not forget to put proper Units to I_0 and R_0 in the Table 1.

Answer:

	Table 1	
BJT current source	Output current, I_0	Output resistance, R_0
Three-transistor current source	1.044 mA	95.783 kΩ
Wilson current source	1.044 mA	3.352 ΜΩ
Cascode current source	0.988 mA	7.085 ΜΩ
$[0.5 \text{ marks}] \times 6 \text{ blanks in the Table 1} = [3 \text{ marks}]$		

Which current source has the most stable I_0 ? Answer: <u>Wilson/Cascode</u> [1 mark]

Calculations for I_0 and R_0 for every BJT current source:

 $[1 \text{ mark}] \ge 6 = [6 \text{ marks}]$

Three-transistor current source	Wilson current source	Cascode current source
$I_{REF} = (V^+ - 2 V_{BE} - V^-)/R_1 = (10 - 2x0.6 - (-10))/(18k) = 1.044 \text{ mA}$		
$I_{O} = I_{REF} / (1 + 2/(\beta(1+\beta)))$	$I_{O} = I_{REF} / (1 + 2/(\beta(2+\beta)))$	$I_O = I_{REF} / (1 + 4/\beta)$
= (1.044 m)/(1+2/(70 x 71))	= (1.044 m)/(1+2/(70 x 72))	= (1.044 m)/(1+4/(70))
= 1.044 mA	= 1.044 mA	= 0.988 mA
$r_{O2} = V_A / I_O$	$r_{03} = V_A / I_0$	$r_{O4} = V_A / I_O$
$= 100/(1.044 \mathrm{m})$	= 100/(1.044m)	= 100/(0.988m)
$= 95.783 \text{ k}\Omega$	$= 95.783 \text{ k}\Omega$	$= 101.216 \text{ k}\Omega$
$R_O = r_{O2}$	$R_{O} = (\beta r_{O3})/2$	$R_O = \beta r_{O4}$
= 95.783 kΩ	=(70x95.783k)/2	$= 70 \times 101.216 \text{k}$
	$= 3.352 \text{ M}\Omega$	= 7.085 MΩ

Name:	Dr JBO		
Student ID Number:	Model answer		
Section: 05A / 05B			
Lecturer: Dr. Jamaludin Bin Omar			

[Question Set 4] EEEB273 - Quiz 2 SEMESTER 1, ACADEMIC YEAR 2011/2012 Date: 2 June 2011

Question:

For all BJT current sources mentioned in this question, all transistors are matched and have same parameters. The transistor parameters are: $\beta = 70$, V_{BE} (on) = 0.6 V, and $V_A = 120$ V. The circuit parameters are: $V^+ = 7.5$ V, $V^- = -7.5$ V and $R_I = 10$ k Ω . Calculate output current (I_0) and output resistance (R_0) for every BJT current source mentioned in Table 1 and fill in the Table 1. Show all calculations and do not forget to put proper Units to I_0 and R_0 in the Table 1.

Answer:

Table 1			
BJT current source	Output current, I_0	Output resistance, R_0	
Three-transistor current source	1.379 mA	86.992 kΩ	
Wilson current source	1.379 mA	3.044 MΩ	
Cascode current source	1.305 mA	6.434 MΩ	
$[0.5 \text{ marks}] \ge 6 \text{ blanks in the Table 1} = [3 \text{ marks}]$			

Which current source has the most stable I_0 ? Answer: <u>Wilson/Cascode</u> [1 mark]

Calculations for I_0 and R_0 for every BJT current source:

 $[1 \text{ mark}] \ge 6 = [6 \text{ marks}]$

Three-transistor current source	Wilson current source	Cascode current source	
$I_{REF} = (V^+ - 2V_{BE} - V^-)/R_1 = (7.5 - 2x0.6 - (-7.5))/(10k) = 1.380 \text{ mA}$			
$I_{O} = I_{REF} / (1 + 2/(\beta(1+\beta)))$	$I_{O} = I_{REF} / (1 + 2/(\beta(2+\beta)))$	$I_O = I_{REF} / (1 + 4/\beta)$	
= (1.380m)/(1+2/(70x71))	= (1.380 m)/(1+2/(70 x 72))	= (1.150 m)/(1+4/(70))	
= 1.379 mA	= 1.379 mA	= 1.305 mA	
$r_{O2} = V_A / I_O$	$r_{03} = V_A / I_0$	$r_{O4} = V_A / I_O$	
= 120/(1.379m)	= 120/(1.379m)	= 120/(1.305m)	
$= 86.992 \mathrm{k}\Omega$	$= 86.992 \text{ k}\Omega$	$= 91.925 \text{ k}\Omega$	
$R_O = r_{O2}$	$R_{O} = (\beta r_{O3})/2$	$R_O = \beta r_{O4}$	
$= 86.992 \text{ k}\Omega$	=(70x86.992k)/2	= 70x91.925k	
	$= 3.044 \text{ M}\Omega$	= 6.434 MΩ	