Name:	Dr JBO
Student ID N	Number: Model Answer
Section:	01A / 01B / 05A / 05B
Lecturer:	Dr. Jamaludin Bin Omar

EEEB273 - Quiz 6 [Question Set 1] SEMESTER 1, ACADEMIC YEAR 2011/2012 Date: 1 August 2011

Question:

Figure 1

Refer to Figure 1.

(a) By using the smallest resistance in the circuit is $10 \text{ k}\Omega$, design an ideal inverting summing amplifier to produce an output voltage of

$$v_{O1} = -2.5(2.4v_{I1} + 0.24v_{I2} + 1.2v_{I3})$$
 --Equation 1--

[8 marks]

Hint: Use the general equation for the ideal inverting summing amplifier.

(b) **Design an additional amplifier circuit** (using ideal inverting operational amplifier) to be connected to the output of the ideal inverting summing amplifier so that the equation for the output voltage of the **new summing amplifier** can be modified to

$$v_{O} = +2.5(2.4v_{I1} + 0.24v_{I2} + 1.2v_{I3})$$
 --Equation 2--

[2 marks]

Hint: Note that **negative sign** in **Equation 1** is inverted in order to produce **Equation 2**.

Show clearly all calculations in order to get full marks.

V01 V01	$v_{O1} = -2.5(2.4v_{I1} + 0.24v_{I2} + 1.2v_{I3})$ $v_{O1} = (-6v_{I1}) + (-0.6v_{I2}) + (-3v_{I3})$ $= (-(R_F/R_1)v_{I1}) + (-(R_F/R_2)v_{I2}) + (-(R_F/R_1)v_{I3})$				
-6v ₁₁ -0.6v -3v ₁₃	$= -(R_F/R_1)$ $y_{I2} = -(R_F/R_2)$ $= -(R_F/R_3)$	$ \overrightarrow{R}_F = 6R_1 \overrightarrow{R}_F = 0.6R_2 \overrightarrow{R}_F = 3R_3 $		[1] [1] [1]	
Ther R _F R ₂ R ₃	refore, the sma = $6R_1$ = $R_F/0.6$ = $R_F/3$	llest resistor is <i>R</i> ₁ . So, set <i>R</i> ₁ = 60k/0.6 = 60k/3	= 10 kΩ = 60 kΩ = 100 kΩ = 20 kΩ	[1] [1] [1] [1]	

(b)

To invert the negative sign in Equation 1 to a positive sign, then the voltage gain of the additional amplifier circuit is -1. [1/2]

Then	$-1 = -(R_5/R_4)$	\rightarrow	$R_5 = R_4$	[1/2]
Let	$R_4 = 10 \text{ k}\Omega$,	then	$R_5 = 10 \text{ k}\Omega.$	[1]

Name:	Dr JBO
Student ID N	Number: Model Answer
Section:	01A / 01B / 05A / 05B
Lecturer:	Dr. Jamaludin Bin Omar

EEEB273 - Quiz 6 [Question Set 2] SEMESTER 1, ACADEMIC YEAR 2011/2012 Date: 1 August 2011

Question:

Figure 1

Refer to Figure 1.

(a) By using the smallest resistance in the circuit is 15 k Ω , design an ideal inverting summing amplifier to produce an output voltage of

$$v_{O1} = -2.5(0.24v_{I1} + 1.2v_{I2} + 2.4v_{I3})$$
 --Equation 1--

[8 marks]

Hint: Use the general equation for the ideal inverting summing amplifier.

(b) **Design an additional amplifier circuit** (using ideal inverting operational amplifier) to be connected to the output of the ideal inverting summing amplifier so that the equation for the output voltage of the **new summing amplifier** can be modified to

$$v_{O} = +2.5(0.24v_{I1} + 1.2v_{I2} + 2.4v_{I3})$$
 --Equation 2--

[2 marks]

Hint: Note that **negative sign** in **Equation 1** is inverted in order to produce **Equation 2**.

Show clearly all calculations in order to get full marks.

<i>v</i> ₀₁	$= -2.5(0.24v_{I1} + 1.2v_{I2} + 2.4v_{I3})$				
V01	$= (-0.6v_{11}) + (-3v_{12}) + (-6v_{13})$			[1/2]	
	$= (-(R_F/R_1))$	v_{I1}) + (-(R_F/R_2) v_{I2}) + (-(R_F/R_1)	<i>v</i> ₁₃)	[1/2]	
-0.6v	$T_{I1} = -(R_F/R_1)$	$\rightarrow R_F = 0.6R_1$		[1]	
$-3v_{I2} = -(R_F/R_2) \rightarrow R_F = 3R_2$					
-6 <i>v</i> ₁₃	$= -(R_F/R_3)$	$\Rightarrow R_F = 6R_3$		[1]	
Ther	efore, the sma	lllest resistor is R ₃ . So, set R ₃	= 15 kΩ	[1]	
R_F	$= 6R_3$		= 90 kΩ	[1]	
R_1	$= R_F / 0.6$	= 90k/0.6	$= 150 \text{ k}\Omega$	[1]	
R_2	$= R_F/3$	= 90k/3	$= 30 \text{ k}\Omega$	[1]	

(b)

To invert the negative sign in Equation 1 to a positive sign, then the voltage gain of the additional amplifier circuit is -1. [1/2]

Then	$-1 = -(R_5/R_4)$	\rightarrow	$R_5 = R_4$	[1/2]
Let	$R_4 = 15 \text{ k}\Omega,$	then	$R_5 = 15 \text{ k}\Omega.$	[1]

Name:	Dr JBO
Student ID N	Sumber: Model Answer
Section:	01A / 01B / 05A / 05B
Lecturer:	Dr. Jamaludin Bin Omar

EEEB273 - Quiz 6 [Question Set 3] SEMESTER 1, ACADEMIC YEAR 2011/2012 Date: 1 August 2011

Question:

Figure 1

Refer to Figure 1.

(a) By using the smallest resistance in the circuit is 12 k Ω , design an ideal inverting summing amplifier to produce an output voltage of

$$v_{O1} = -2.5(1.2v_{I1} + 0.24v_{I2} + 2.4v_{I3})$$
 --Equation 1--

[8 marks]

Hint: Use the general equation for the ideal inverting summing amplifier.

(b) **Design an additional amplifier circuit** (using ideal inverting operational amplifier) to be connected to the output of the ideal inverting summing amplifier so that the equation for the output voltage of the **new summing amplifier** can be modified to

$$v_{O} = +2.5(1.2v_{I1} + 0.24v_{I2} + 2.4v_{I3})$$
 --Equation 2--

[2 marks]

Hint: Note that **negative sign** in **Equation 1** is inverted in order to produce **Equation 2**.

Show clearly all calculations in order to get full marks.

$v_{O1} = -2.5(1.2v_{I1} + 0.24v_{I2} + 2.4v_{I3})$ $v_{O1} = (-3v_{I1}) + (-0.6v_{I2}) + (-6v_{I3})$ $= (-(R_F/R_1)v_{I1}) + (-(R_F/R_2)v_{I2}) + (-(R_F/R_1)v_{I3})$				
$-3v_{I1}$ -0.6 v_{I3}	$= -(R_F/R_1)$ $= -(R_F/R_2)$ $= -(R_F/R_3)$	$ R_F = 3R_1 R_F = 0.6R_2 R_F = 6R_3 $		[1] [1] [1]
There R_F R_1 R_2	efore, the small = $6R_3$ = $R_F/3$ = $R_F/0.6$	llest resistor is <i>R</i> ₃ . So, set <i>R</i> ₃ = 72k/3 = 72k/0.6	= 12 kΩ = 72 kΩ = 24 kΩ = 120 kΩ	[1] [1] [1] [1]

(b)

To invert the negative sign in Equation 1 to a positive sign, then the voltage gain of the additional amplifier circuit is -1. [1/2]

Then	$-1 = -(R_5/R_4)$	\rightarrow	$R_5 = R_4$	[1/2]
Let	$R_4 = 12 \text{ k}\Omega,$	then	$R_5 = 12 \text{ k}\Omega.$	[1]

Name:	Dr JBO
Student ID N	Sumber: Model Answer
Section:	01A / 01B / 05A / 05B
Lecturer:	Dr. Jamaludin Bin Omar

EEEB273 - Quiz 6 [Question Set 4] SEMESTER 1, ACADEMIC YEAR 2011/2012 Date: 1 August 2011

Question:

Figure 1

Refer to Figure 1.

(a) By using the smallest resistance in the circuit is 18 k Ω , design an ideal inverting summing amplifier to produce an output voltage of

$$v_{O1} = -2.5(0.24v_{I1} + 1.2v_{I2} + 2.4v_{I3})$$
 --Equation 1--

[8 marks]

Hint: Use the general equation for the ideal inverting summing amplifier.

(b) **Design an additional amplifier circuit** (using ideal inverting operational amplifier) to be connected to the output of the ideal inverting summing amplifier so that the equation for the output voltage of the **new summing amplifier** can be modified to

$$v_{O} = +2.5(0.24v_{I1} + 1.2v_{I2} + 2.4v_{I3})$$
 --Equation 2--

[2 marks]

Hint: Note that **negative sign** in **Equation 1** is inverted in order to produce **Equation 2**.

Show clearly all calculations in order to get full marks.

<i>v</i> ₀₁	$= -2.5(0.24v_{I1} + 1.2v_{I2} + 2.4v_{I3})$				
<i>v</i> ₀₁	$= (-0.6v_{11}) + (-3v_{12}) + (-6v_{13})$			[1/2]	
	$= (-(R_F/R_1))$	v_{I1}) + (-(R_F/R_2) v_{I2}) + (-(R_F/R_1)	<i>v</i> ₁₃)	[1/2]	
-0.6v	$T_{I1} = -(R_F/R_1)$	$\rightarrow R_F = 0.6R_1$		[1]	
$-3v_{I2}$	$= -(R_F/R_2)$	$\rightarrow R_F = 3R_2$		[1]	
-6 <i>v</i> ₁₃	$= -(R_F/R_3)$	$\Rightarrow R_F = 6R_3$		[1]	
Ther	efore, the sma	llest resistor is R ₃ . So, set R ₃	= 18 kΩ	[1]	
R_F	$= 6R_3$		= 108 k Ω	[1]	
R_1	$= R_F / 0.6$	= 108k/0.6	= 180 kΩ	[1]	
R_2	$=R_F/3$	= 108 k/3	= 36 kΩ	[1]	

(b)

To invert the negative sign in Equation 1 to a positive sign, then the voltage gain of the additional amplifier circuit is -1. [1/2]

Then	$-1 = -(R_5/R_4)$	\rightarrow	$R_5 = R_4$	[1/2]
Let	$R_4 = 18 \text{ k}\Omega$,	then	$R_5 = 18 \text{ k}\Omega.$	[1]