

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 2 2011 / 2012

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: January 2012
TIME	: 3 hours (9.00 am – 12.00 pm)

INSTRUCTIONS TO CANDIDATES:

- 1. This question paper contains SIX (6) questions in TWELVE (12) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided.
- 4. Write answer to each question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.

THIS QUESTION PAPER CONSISTS OF TWELVE (12) PRINTED PAGES INCLUDING THIS COVER PAGE AND APPENDIX.

Question 1 [16 marks]

- (a) A basic **two-transistor BJT current source** consists of two **npn-type BJT transistors** and a resistor, R_1 , to establish its **reference current**, I_{REF} . The reference current is established when the circuit is connected to positive and negative power source, V^+ and V^- .
 - (i) Let the second transistor, Q_2 , be the output transistor. Draw and label the circuit and its components clearly.

[3 marks]

(ii) Assume the transistors are matched and the transistors parameters are $\beta = 88$, $I_{S1} = 4.5 \times 10^{-15}$ A, and $I_{S2} = 3 \times 10^{-15}$ A. If $I_{REF} = 210$ µA, calculate V_{BE1} , V_{BE2} , and the bias current, I_O .

[5 marks]

- (b) A cascode N-MOSFET current source circuit is described by the following: The output current is 1 mA; The circuit parameters are $V^+ = 15$ V and $V^- = -15$ V; All transistors are identical; The transistor parameters are $V_{DS}(\text{sat}) = 0.8$ V, $V_{TN} = 1.5$ V, $k'_n = 120 \,\mu\text{A/V}^2$ and $\lambda = 0$.
 - (i) Find the aspect ratio for all transistors of the cascode current source.

[4 marks]

(ii) What is the required resistance value, \mathbf{R} , to establish the reference current?

[2 marks]

(iii) How much will the output current change if the output voltage changes by 5 V?[2 marks]

Question 2 [16 marks]

Consider the circuit shown in Figure 2, where a MOSFET differential amplifier (consists of M_1 and M_2) is biased by a cascode current source (consists of M_3 , M_4 , M_5 , and M_6). The bias voltages are +3 V and -3 V. The transistor parameters are $K_{n1} = K_{n2} = 150 \ \mu \text{A/V}^2$, $K_{n3} = K_{n4} = K_{n5} = K_{n6} = 100 \ \mu \text{A/V}^2$, and $V_{TN} = 0.3 \text{ V}$ for all transistors.

Figure 2

(a) Calculate R_1 and R_D in the circuit such that $V_{DS1} = V_{DS2} = 3$ V, $V_{DS3} = V_{DS5}$, and $I_{D1} = I_{D2} = 60 \ \mu$ A when $v_1 = v_2 = -0.5$ V. *Hints*: $V_G = V_S + V_{GS}$, $V_D = V_S + V_{DS}$.

[8 marks]

(b) **One-sided output** (V_0) taken at V_{D2} can be derived using small-signal equivalent circuit to produce

$$V_{o} = \frac{g_{m}R_{D}}{2}V_{d} - \frac{g_{m}R_{D}}{1 + 2g_{m}R_{o}}V_{cm}$$

If $\lambda = 0.01 \text{ V}^{-1}$ for M_3, M_4, M_5 , and M_6 :

(i) **Determine** the **output resistance** (\mathbf{R}_o) of the MOSFET cascode current source.

[2 marks]

(ii) Calculate the differential-mode voltage gain (A_d) , common-mode voltage gain (A_{cm}) , and *CMRR* for the differential amplifier using result from part (a).

[6 marks]

Question 3 [16 marks]

(a) The differential amplifier in Figure 3a has 4 identical PMOS transistors as an active load. The circuit is connected to power supply voltages of $V^+ = +3$ V and $V^- = -3$ V. The current source is $I_Q = 200 \ \mu$ A and its output resistance, $R_{OCS} = \infty$. The NMOS transistors parameters are $V_{TN} = 0.4$ V, $k'_n = 100 \ \mu$ A/V², $(W/L)_n = 10$, and $\lambda_n = 0.02$ V⁻¹. The PMOS transistors parameters are $V_{TP} = -0.4$ V, $k'_p = 50 \ \mu$ A/V², $(W/L)_p = 12$, and $\lambda_p = 0.03$ V⁻¹. Determine the output voltage, v_O , if the differential input voltage applied is $v_d = (20 \ \sin \omega t) \ \mu$ V.

[8 marks]

Figure 3a

(b) The circuit in Figure 3b shows a simple multistage BJT op-amp.

Figure 3b

(i) Name the circuits indicated by the boxes.

[2 marks]

(ii) Assuming that for all transistors: $r_o = 500 \text{ k}\Omega$, $g_m = 5 \text{ mA/V}$, and $r_{\pi} = 3 \text{ k}\Omega$, and $R_2 = 10 \text{ k}\Omega$. Calculate the small signal impedances R_i and R_o as indicated in the Figure 3b.

[6 marks]

Question 4 [16 marks]

- (a) Consider input stage and bias circuit of the 741 operational amplifier in Figure 4a, with $V^+ = +15 \text{ V}$, $V^- = -15 \text{ V}$, $V_{BE6} = V_{BE7} = 0.6 \text{ V}$, $\beta = 200$ and $I_{C9} = 10 \mu\text{A}$. The reverse saturation current $I_S = 10^{-14} \text{ A}$ for each transistor and the current flow through resistance R_5 is 1mA. Ignore the base currents and assume the dc currents in the input stage are exactly balanced.
 - (i) Determine the resistance R_5 and R_4 .

[4 marks]

(ii) Find the current I_{C1} and $r_{\pi 6}$.

[2 marks]

(iii) Determine the dc voltage at the collector of Q_5 (i.e. V_{C5}).

[2 marks]

Figure 4a

(b) Consider the MC14573 op-amp in Figure 4b. Assume transistors parameters of $V_{TN} = 0.5 \text{ V}$, $V_{TP} = -0.5 \text{ V}$, $K_n = 125 \mu \text{A/V}^2$, $K_p = 100 \mu \text{A/V}^2$, $V_{SG5} = 1.5 \text{ V}$, $\lambda_n = 0.01 \text{ V}^{-1}$, $\lambda_p = 0.02 \text{ V}^{-1}$ and the circuit parameters of $V^+ = +10 \text{ V}$ and $V^- = -10 \text{ V}$.

(i) **Find** the dc bias currents I_Q .

[3 marks]

(ii) **Determine** the overall voltage gain of the op-amp.

[5 marks]

Question 5 [16 marks]

(a) Differentiate among class-A, class-B, class-AB, and class-C output stage amplifiers.

[6 marks]

(b) Study Figure 5 carefully. The transistor parameters are: $\beta = 180$, $V_{BE}(on) = 0.7$ V, and $V_{CE}(sat) = 0.4$ V. Design the output stage amplifier for maximum output swing and then calculate its power conversion efficiency, η .

[10 marks]

Figure 5

Question 6 [20 marks]

- (a) Using feedback resistor of 18 k Ω , draw the following circuits using inverting op-amp configuration:
 - (i) An **inverting amplifier** with a closed-loop gain of -10.

[4 marks]

(ii) A voltage follower.

[4 marks]

(b) Consider the **non-inverting op-amplifier** shown in **Figure 6a**. Assume the op-amp is ideal. Determine the resistor values of R_1 and R_2 to produce a closed-loop gain of 15, with the minimum resistance in the circuit is to be 20 k Ω .

[4 marks]

Figure 6a

(c) For a **generalized summing op-amp** as shown in **Figure 6b** the total output voltage is the sum of the individual terms, or

$$v_{O} = -\frac{R_{F}}{R_{1}}v_{I1} - \frac{R_{F}}{R_{2}}v_{I2} + \left(1 + \frac{R_{F}}{R_{N}}\right)\left(\frac{R_{P}}{R_{A}}v_{I3} + \frac{R_{P}}{R_{B}}v_{I4}\right)$$
$$R_{N} = R_{1}||R_{2}$$

where

$$R_P = R_A \|R_B\| R_C$$

Design a summing op-amp similar to Figure 6b to produce the output

$$v_o = -5v_{I1} - 10v_{I2} + 5v_{I3} + 2v_{I4}$$

The smallest resistor value allowable in the design is $15 \text{ k}\Omega$.

[8 marks]

Figure 6b

-END OF QUESTION PAPER-

APPENDIX

BASIC FORMULA FOR TRANSISTORS

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

$$r_{\pi} = \frac{\beta V_{T}}{I_{CQ}}$$
$$g_{m} = \frac{I_{CQ}}{V_{T}}$$
$$\beta = g_{m}r_{\pi}$$
$$r_{o} = \frac{V_{A}}{I_{CQ}}$$

MOSFET

$$v_{DS}(sat) = v_{GS} - V_{TN}$$
$$i_D = K_n [v_{GS} - V_{TN}]^2$$
$$K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$$

$$v_{SD}(sat) = v_{SG} + V_{TP}$$
$$i_D = K_p [v_{SG} + V_{TP}]^2$$
$$K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$$

$$g_m = 2\sqrt{K_n I_{DQ}}$$
$$r_o \cong \frac{1}{\lambda I_{DQ}}$$