MODEL ANSWERS

Section: 01A/01B/02A/02B

Student ID Number:

Name:

Lecturer: Dr Jamaludin/Dr Azni Wati

College of Engineering

Department of Electronics and Communication Engineering

Midterm Test SEMESTER 2, ACADEMIC YEAR 2011/2012

Subject Code	•	EEEB273
Course Title	•	Electronics Analysis & Design II
Date	•	14 November 2011
Time Allowed	•	2 hours (8 – 10 PM)

Instructions to the candidates:

- 1. Write your Name and Student ID number. Circle your section number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question No.					
Marks					

Question 1 [40 marks]

- (a) For all **BJT current sources** given in **Table 1**, all transistors are matched and have same parameters. The transistor parameters are: $\beta = 50$, $V_{BE}(on) = 0.6$ V, and $V_A = 120$ V. The circuit parameters are: $V^+ = 10$ V, $V^- = -10$ V, and $R_1 = 18$ k Ω .
 - (i) **Calculate** reference current (I_{REF}) , output current (I_O) , and output resistance (R_O) for every BJT current source given in the **Table 1** and fill in the **Table 1** with your answers. Show all calculations in the area provided after the **Table 1** and **do not forget** to put proper Units for I_{REF} , I_O , and R_O in the **Table 1**.

Table 1						
BJT current source	Reference current, I_{REF}	Output current, Io	Output resistance, R_0			
Three-transistor	1.044 mA	1.044 mA	114.98 kΩ			
current source						
Wilson current source	1.044 mA	1.044 mA	2.847 ΜΩ			
Cascode current source	1.044 mA	0.967 mA	6.204 ΜΩ			
[0.5 mark each] [4.5 marks]						

(ii) Based on the value of R_0 , which current source has the most stable I_0 ?

[2 marks]

Cascode [2]

Show all your calculations for I_{REF} , I_0 , and R_0 for every BJT current source given in the Table 1 in the following space:

[13.5 marks]

Three-transistor current source	Wilson current source	Cascode current source			
$I_{REF} = (V^+ - 2 V_{BE} - V^-)/R_1 = (10 - 2x0.6 - (-10))/(18k) = 1.044 \text{ mA}$ same for all CS					
$I_{O} = I_{REF} / (1 + 2/(\beta(1+\beta)))$	$I_{O} = I_{REF} / (1 + 2/(\beta(2+\beta)))$	$I_O = I_{REF} / (1 + 4/\beta)$			
= (1.044 m)/(1+2/(50 x 51))	= (1.044 m)/(1+2/(50 x 52))	= (1.044 m)/(1+4/(50))			
= 1.044 mA	= 1.044 mA	= 0.967 mA			
$r_{O2} = V_A / I_O$	$r_{O3} = V_A / I_O$	$r_{O4} = V_A / I_O$			
= 120/(1.044m)	= 120/(1.044m)	= 120/(1.278m)			
$= 114.98 \text{ k}\Omega$	$= 114.98 \text{ k}\Omega$	$= 124.08 \text{ k}\Omega$			
$\boldsymbol{R}_{O} = \boldsymbol{r}_{O2}$	$\boldsymbol{R}_{\boldsymbol{O}} = (\boldsymbol{\beta} \boldsymbol{r}_{\boldsymbol{O}3})/2$	$R_O = \beta r_{O4}$			
$= 114.98 \text{ k}\Omega$	=(50x114.98k)/2	$= 50 \times 117.391 \text{k}$			
	$= 2.847 \text{ M}\Omega$	= 6.204 MΩ			
[15 more soch]					

(b) Consider the **MOSFET current source** circuit shown in **Figure 1** for the following questions. The circuit parameters are $V^+ = 10$ V, $V^- = -10$ V, $I_0 = 0.25$ mA, and the transistor parameters are: $V_{TN} = 1.5$ V, $V_{DS2}(\text{sat}) = 2.5$ V, $k'_{n1} = k'_{n2} = 40 \text{ }\mu\text{A}/\text{V}^2$, $k'_{n3} = 20 \text{ }\mu\text{A}/\text{V}^2$ and $\lambda = 0$.

(i) **Determine** the voltages V_{GS1} and V_{GS3} , and the current I_{REF} .

(ii) **Calculate** the width-to-length ratio of
$$M_3$$
, i.e. $\binom{W/L}{3}$.

[4 marks]

$$I_{REF} = (k'_{n3}/2)(W/L)_3[V_{GS3} - V_{TN}]^2$$

$$(W/L)_3 = I_{REF} / \{ (k'_{n3}/2) [V_{GS3} - V_{TN}]^2 \}$$

$$= (0.25m) / \{ (20\mu/2) (16-1.5)^2 \} = 0.1189$$
[1]

(iii) If $\lambda = 0.01 \text{ V}^{-1}$, what is the change in output current (I_0) as the output voltage at V_{D2} has changed by 9 V?

[4 marks]

 $R_0 = r_{02} = 1/(\lambda I_0) = 1/(0.01 \times 0.25 \text{m}) = 400 \text{ k}\Omega$ [2]

 $R_{O} = \Delta V_{D2} / \Delta I_{O}$

 $\Delta I_0 = \Delta V_{D2} / R_0 = 9/400 \text{k} = 0.0225 \text{ mA} = 22.5 \text{ }\mu\text{A}$ [2]

(iv) **Suggest** a suitable **circuit** to stabilize the output current against variations in the output voltage of the MOSFET current source.

[4 marks]

Use other MOSFET current source circuits with higher *R*₀, such as cascode CS and modified Wilson CS.

Answer in drawing of cascode CS and modified Wilson CS also can be accepted.

[4] for any answer above.

Question 2 [30 marks]

The **BJT differential amplifier** as shown in **Figure 2** has these following parameters: $V^+ = 10$ V, $V^- = -10$ V, $R_1 = 30$ k Ω , $\beta = 100$, $V_{CE1} = V_{CE2} = 6$ V, $A_{cm} = 0.5$, and $V_T = 26$ mV. The Early voltages are $V_A = 100$ V for Q_1 and Q_2 , and $V_A = 80$ V for Q_3 and Q_4 . Use $V_{BE}(on) = 0.6$ V.

(a) **Determine** the currents I_1 and I_{C2} of the transistors for $v_1 = v_2 = 0$ V.

[8 marks]

 $I_1 = (V^+ - V_{BE}(\text{on}) - V^-) / R_1$ = (10 - 0.6 - (-10))/(30k) = 0.647 mA [4]

 $I_{C2} = I_{C4}/2 = [I_1 / (1+2/\beta)] / 2$ = [0.647m / (1+2/100)] / 2 = 0.3171 mA [4]

Figure 2

(b) **Determine** the values of R_C , r_{o4} , r_{o2} .

[9 marks]

$R_{\rm C} \\ V_{C2} \\ V_{E2}$	$= (V^{+} - V_{C2})$ = (V _{CE2} + V ₁ = (V _{B2} - V _{BE})		= (10 - 5.4) / 0.3171m = 13.876 kΩ = 5.4 V = 0 - 0.6 = -0.6 V		
<i>r</i> ₀₄	$= V_{A4} / I_{C4}$	= 80 / 0.647m	= 123.64 kΩ	[3]	
<i>r</i> ₀₂	$= V_{A2} / I_{C2}$	= 100 / 0.3171m	= 315.36 kΩ	[3]	

(c) **Determine** the differential mode voltage gain (A_d) and *CMRR* for a two-sided output.

[8 marks]

A_d	$=g_{m2}R_{\rm C}$	= (12.196 m)(13.876k)	= 169.23	[3]
g _{m2}	$= I_{\rm C2} / V_T$	= 0.3171mA / 26mV	= 12.196 mA/V	[2]
CMRR	$= A_d / A_{cm} $	= 176.89 / 0.5	= 353.78	[3]

(d) What is the impact of including an emitter resistor R_E for Q_1 and Q_2 on the differential mode voltage gain (A_d) ? Write down the equation of the differential mode voltage gain when emitter resistor R_E for Q_1 and Q_2 are included in the circuit.

[5 marks]

A_d	is red	uced.	[2]
Original:	A_d	$= (\beta R_{\rm C}) / 2[r_{\pi}]$	
With <i>R_E</i> :	A_d	$= (\beta R_{\rm C}) / 2[r_{\pi} + (1+\beta) R_{\rm E}]$	[3]

Question 3 [30 marks]

With aid of circuit diagram, design a MOSFET differential amplifier with cascode current source to establish the desired bias current $I_Q = 0.58$ mA. The supply voltages for the overall circuit are $V^+ = 10$ V and $V^- = -10$ V. The transistor parameters for the MOSFET differential amplifier pair are $k'_n = 80 \ \mu A/V^2$ and for the current source pair are $k'_n = 40 \ \mu A/V^2$. For all transistors assume $\lambda = 0.02$ V⁻¹ and $V_{TN} = 1$ V. Consider a one-sided output with $V_{DS2}(sat) = 0.8$ V and a differential-mode voltage gain of $A_d = 10$.

(a) **Draw** the designed circuit. **Label the circuit clearly**.

[7 marks]

(b) Determine the (W/L) ratio for transistors in the differential amplifier pair.

[8 marks]

 $(W/L)_{1,2} = (2I_{D1})/[k'_n(V_{GS1}-V_{TN})^2]$ [2]

$$= (I_Q)/[k'_n(V_{DS2}(\text{sat}))^2]$$
 [3]

$$= (0.58m)/[(80\mu)(0.8)^{2}]$$
[2]

(c) **Determine** the drain resistance (R_D) in the **differential amplifier**.

[6 marks]

g_{m2}	$= 2[\sqrt{(K_n I_D)}] = (I_Q)/[(V_{DS2}(\text{sat}))]$	= 0.725 mA/V	[2]
R_D	$= (2 A_{\rm d}) / g_{m2}$		[2]
A_d	$= (g_{m2} R_{\rm D})/2$		

$$R_D = (2 A_d) / g_{m2}$$

= (2 x 10) / (0.725m) = 27.58 kΩ [2]

(d) Draw the output voltage of the differential amplifier when a differential-mode input voltage of $v_d = 0.2 \sin \omega t V$ is applied.

[4 marks]

v ₀	$= A_d v_d$ = (10)(0.2 sin ωt) V or 2 sin ωt V	[1]
	Amplitude	[1]
	Shape	[1]
	Axis	[1]
	ro	

(e) With reference to your designed circuit in part (a) above, and using a P-MOSFET cascode current source as an active load to replace the drain resistances (R_D) in the differential amplifier, as shown in Figure 3, calculate the differential-mode voltage gain (A_d) of the new circuit for a one-sided output. For all P-MOSFET transistors M_{11} to M_{14} , assume $\lambda = 0.02 \text{ V}^{-1}$ and $V_{TP} = -1 \text{ V}$. R_O in the Figure 3 can be calculated using $R_O \approx g_m r_{o12} r_{o14}$

[5 marks]

Figure 3

 $= 1/(\lambda I_{D2})$ $= 1/[(0.02)(0.29m)] = 172.4 \text{ k}\Omega$ r_{02} [1] $r_{o12} = r_{o14} = r_{o2} = 172.4$ k [1] $= 2[\sqrt{(K_n I_D)}] = (I_Q)/[V_{DS2}(\text{sat})]$ = 0.725 mA/V g_m R_{0} = (0.725m)(172.4k)(172.4k)= 21.548 MΩ [1] $= r_{o2} || R_o \approx r_{o2}$ = 172.4 kΩ [1] **R**_{out} $= g_m R_{out}$ = (0.725m)(172.4k Ω) = 124.99 A_d [1]

-End of Questions-