

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 3 2011 / 2012

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: May 2012
TIME	: 3 hours

INSTRUCTIONS TO CANDIDATES:

- 1. This question paper contains SIX (6) questions in THIRTEEN (13) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided.
- 4. Write answer to each question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.
- 6. Use at least **4 significant numbers** in all calculations.

THIS QUESTION PAPER CONSISTS OF THIRTEEN (13) PRINTED PAGES INCLUDING THIS COVER PAGE AND APPENDIX.

Question 1 [16 marks]

- (a) A basic three-transistor current source consists of matched npn transistors Q_1 , Q_2 , and Q_3 , has output current (I_0) and reference current (I_{REF}) . A resistor R_1 is used to establish I_{REF} . The circuit parameters are $V^+ = 3$ V and V = -3 V, and the transistor parameters are $V_{BE}(on) = 0.7$ V, $\beta = 50$, and $V_A = \infty$.
 - (i) Let the second transistor, Q_2 , be the output transistor. Draw and label the circuit and its components clearly.

[3 marks]

(ii) If the output current is **0.25 mA**, what are the values of I_{REF} and R_1 ?

[4 marks]

(iii) **Discuss the advantage** of a BJT three-transistor current source over **two-transistor** current source.

- (b) For a MOSFET current source shown in Figure 1, the transistor parameters are $k'_n = 100 \mu A/V^2$, $V_{TN} = 0.4 V$ and $\lambda = 0.01 V^{-1}$. Given that $V^+ = 2.5 V$, V = -2.5 V, $I_{REF} = 100 \mu A$, $I_O = 60 \mu A$, and $V_{DS2}(\text{sat}) = 0.4 V$, find:
 - (i) The width-to-length (W/L) ratio for all transistors in the circuit.

[5 marks]

(ii) How much the output current (I_0) would change if the output voltage at V_{D2} changes by **3V**?

Figure 1

Question 2 [16 marks]

- (a) Consider the BJT differential amplifier in Figure 2a. Study Figure 2a carefully. The circuit and transistor parameters are $I_Q = 1$ mA, $\beta = 100$, and Early voltage $V_A = \infty$.
 - (i) **Design** the circuit such that **one-sided** differential-mode **output** voltage at $v_{C2} = 7.5$ V when a differential-mode input voltage of $v_d = 0.05$ V is applied.

[4 marks]

(ii) **Determine** the differential-mode input resistance (\mathbf{R}_{id}).

[2 marks]

(iii) **Determine** the *CMRR_{dB}* when the common-mode voltage gain (A_{cm}) is -0.2 V/V. [2 marks]

Figure 2a

(b) The BJT differential amplifier shown in Figure 2b is biased by a 0.18 mA constant current source (i.e. $I_Q = 0.18$ mA). It is to be redesigned to use an active load in order to increase its differential-mode voltage gain (A_d) . The active load to be used is a BJT Wilson current source using pnp transistors to replace the collector resistors (R_C) in the differential amplifier, as graphically shown in Figure 2b.

The transistor parameters are $\beta = 150$, $V_{BE}(\text{on}) = V_{EB}(\text{on}) = 0.7 \text{ V}$, $V_{AN} = 120 \text{ V}$, and $V_{AP} = 100 \text{ V}$. The one-sided output voltage taken at v_{C2} can be calculated using:

$$v_O = v_{C2} = g_{m2} v_d (r_{O2} \parallel R_{OAL})$$

where R_{OAL} is the output resistance of the BJT Wilson current source.

(i) **Draw the new circuit** incorporating the **active load's full circuit diagram**. Label the circuit correctly and clearly with appropriate symbols and numbering for transistors used in circuit. Leave I_Q symbol as it is in the Figure 2b.

[4 marks]

(ii) Find the output resistance of the BJT Wilson current source (R_{OAL}).

[2 marks]

(iii) **Determine** the differential-mode voltage gain (A_d) of the new circuit.

Question 3 [16 marks]

- (a) Consider the MOSFET differential amplifier with an active load as shown in Figure 3a. The transistors parameters are $V_{TN} = 1$ V, $V_{TP} = -1$ V, $K_n = 90 \ \mu A/V^2$, $K_p = 60 \ \mu A/V^2$, $I_Q = 0.4 \ mA$, $\lambda_n = 0.02 \ V^{-1}$ and $\lambda_p = 0.01 \ V^{-1}$. Assume that the differential amplifier transistors M_1 and M_2 are identical and active load transistors M_3 and M_4 are identical. Determine:
 - (i) The **output resistance** of the amplifier.

[3 marks]

(ii) The differential-mode voltage gain.

[3 marks]

(iii) The **output voltage**, v_0 , if the differential input voltage applied is $v_d = (20 \sin \omega t) \mu V$.

[1 mark]

Figure 3a

- (b) Consider the multistage bipolar circuit in Figure 3b, in which base currents are negligible. The transistors and circuits parameters are: $V_{BE}(on) = 0.7 \text{ V}$, $\beta = 100 \text{ and } V_A = \infty$, $R = 12 \text{ k}\Omega$, $R_C = 4 \text{ k}\Omega$, $R_{E1} = 2.6 \text{ k}\Omega$, $R_{E2} = 2.43 \text{ k}\Omega$, $I_Q = 0.5 \text{ mA}$, $I_{CQ3} = 0.5 \text{ mA}$ and $I_{CQ4} = 3 \text{ mA}$. Determine:
 - (i) The output voltage v_{02} , v_{03} , and v_0 when $v_1 = v_2 = 0$ V.

[3 marks]

(ii) The overall voltage gain (v_0/v_d) if the voltage gain of the second stage (i.e. v_{03}/v_{02}) = -1.47 V/V.

[6 marks]

Figure 3b

Question 4 [16 marks]

(a) Figure 4a shows reference circuit and gain stage of 741 op-amp. Transistors Q_{12} and Q_{13} form a current mirror, and Q_{13B} has a scale factor 0.70 times that of Q_{12} . Power supply voltages are $V^+ = +12$ V and $V^- = -12$ V. Assume $V_{BE} = V_{EB} = 0.6$ V and $\beta = 200$ for npn transistors. Calculate I_{REF} and I_{C16} .

[8 marks]

Figure 4a

- (b) A MOSFET op-amp circuit as shown in Figure 4b is biased with $I_Q = 200 \ \mu$ A. The transistor parameters are $k'_n = 100 \ \mu$ A/V², $k'_p = 40 \ \mu$ A/V², $V_{TN} = 0.4 \ V$, $V_{TP} = -0.4 \ V$, and $\lambda_n = \lambda_p = 0$. The transistor aspect ratios are $(W/L)_1 = (W/L)_2 = 20$, $(W/L)_3 = 50$, and $(W/L)_4 = 40$.
 - (i) **Design** the circuit (i.e. find the values of R_{D1} , R_{D2} , and R_S) such that $I_{D3} = 150 \ \mu\text{A}$, $I_{D4} = 200 \ \mu\text{A}$, and $v_o = 0$ for $v_1 = v_2 = 0$.

[6 marks]

(ii) Find the differential voltage gain (A_d) of the differential amplifier in the circuit.

Figure 4b

Question 5 [16 marks]

Study the output stage circuit shown in Figure 5 carefully. Let $R_L = 1 \text{ k}\Omega$, $V_{BB} = 1.40 \text{ V}$ and the reverse saturation current for the transistors, $I_S = 2 \times 10^{-15} \text{ A}$. Assume $\beta >> 1$.

(a) Explain the "cross-over distortion" phenomenon in class-B output stage.

[3 marks]

(b) What is the **advantage** of the output stage shown in **Figure 5** compared to the **class-A** and **class-B** output stages?

[2 marks]

- (c) Referring to Figure 5, for the case of the output voltage $v_0 = -4$ V, determine i_L , i_{Cp} , and i_{Cn} . [7 marks]
- (d) Referring to Figure 5, for the case of the output voltage $v_0 = -4$ V, calculate the power dissipated in transistor Q_n and Q_p .

[4 marks]

Figure 5

Question 6 [20 marks]

(a) States four (4) applications of an ideal operational amplifier.

[4 marks]

(b) Consider the two inverting op-amp circuit connected in cascade as shown in Figure 6a. Let $R_1 = 20 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 80 \text{ k}\Omega$, and $R_4 = 40 \text{ k}\Omega$. Find v_O/v_I for the circuit.

[6 marks]

Figure 6a

Figure 6b

(c) A general output equation for a difference amplifier shown in Figure 6b is

$$v_O = A_d v_d + A_{cm} v_{cm}$$

For the difference amplifier in Figure 6b, the circuit parameters are $R_1 = R_3 = 10 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, and $R_4 = 110 \text{ k}\Omega$ and the output voltage equation is as follows:

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{R_{4} / R_{3}}{1 + R_{4} / R_{3}}\right) v_{I2} - \left(\frac{R_{2}}{R_{1}}\right) v_{I1}$$

$$v_{I1} = v_{cm} - \frac{v_d}{2}$$

where

$$v_{I2} = v_{cm} + \frac{v_d}{2}$$

and

Find A_d , A_{cm} , and then calculate the *CMRR* in dB.

[10 marks]

-END OF QUESTION PAPER-

APPENDIX

BASIC FORMULA

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$

$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$

$$i_{C} = \alpha i_{E} = \beta i_{B}$$

$$i_{E} = i_{B} + i_{C}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$
; P – MOSFET
 $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$
 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_{?}I_{DQ}}$$
$$r_o \cong \frac{1}{\lambda I_{DQ}}$$