EEEB273 - Quiz 3 [Question Set 1] SEMESTER 3, ACADEMIC YEAR 2011/2012 Date: 14 March 2012

Name:	Dr JBO
Student ID Number:	Model Answer
Section: 01A/01B	
Lecturer: Dr. Jamaludin Bin Omar	

Question:

Refer to Figure 1. Transistors are matched with $K_n = 0.1 \text{ mA/V}^2$, $\lambda = 0$ and $V_{TN} = 1 \text{ V}$. Given that $R_D = 16 \text{ k}\Omega$ and $I_Q = 0.6 \text{ mA}$. Find the one-sided output voltage (V_o) taken at V_{D2} of the differential amplifier when $v_1 = 0.10 \text{ V}$ and $v_2 = 0.15 \text{ V}$. [10 marks] Hints: You need to find A_d and v_d first.

Figure 1

EEEB273 - Quiz 3 [Question Set 2] SEMESTER 3, ACADEMIC YEAR 2011/2012 Date: 14 March 2012

Name:	Dr JBO
Student ID Number:	Model Answer
Section: 01A/01B	
Lecturer: Dr. Jamaludin Bin Omar	

Question:

Refer to Figure 1. Transistors are matched with $K_n = 0.1 \text{ mA/V}^2$, $\lambda = 0$ and $V_{TN} = 1 \text{ V}$. Given that $R_D = 18 \text{ k}\Omega$ and $I_Q = 0.62 \text{ mA}$. Find the **one-sided output voltage** (V_o) taken at V_{D2} of the differential amplifier when $v_1 = 0.15 \text{ V}$ and $v_2 = 0.10 \text{ V}$. [10 marks] Hints: You need to find A_d and v_d first.

Figure 1

EEEB273 - Quiz 3 [Question Set 3] SEMESTER 3, ACADEMIC YEAR 2011/2012 Date: 14 March 2012

Name:	Dr JBO
Student ID Number:	Model Answer
Section: 01A/01B	
Lecturer: Dr. Jamaludin Bin Omar	

Question:

Refer to Figure 1. Transistors are matched with $K_n = 0.1 \text{ mA/V}^2$, $\lambda = 0$ and $V_{TN} = 1 \text{ V}$. Given that $R_D = 16 \text{ k}\Omega$ and $I_Q = 0.62 \text{ mA}$. Find the **one-sided output voltage** (V_o) taken at V_{D2} of the differential amplifier when $v_1 = 0.15 \text{ V}$ and $v_2 = 0.10 \text{ V}$. [10 marks] Hints: You need to find A_d and v_d first.

Figure 1

EEEB273 - Quiz 3 [Question Set 4] SEMESTER 3, ACADEMIC YEAR 2011/2012 Date: 14 March 2012

Name:	Dr JBO
Student ID Number:	Model Answer
Section: 01A/01B	
Lecturer: Dr. Jamaludin Bin Omar	

Question:

Refer to Figure 1. Transistors are matched with $K_n = 0.1 \text{ mA/V}^2$, $\lambda = 0$ and $V_{TN} = 1 \text{ V}$. Given that $R_D = 18 \text{ k}\Omega$ and $I_Q = 0.6 \text{ mA}$. Find the one-sided output voltage (V_o) taken at V_{D2} of the differential amplifier when $v_1 = 0.10 \text{ V}$ and $v_2 = 0.13 \text{ V}$. [10 marks] Hints: You need to find A_d and v_d first.

Figure 1