

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 1 2012 / 2013

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: September 2012
TIME	: 3 hours

INSTRUCTIONS TO CANDIDATES:

- 1. This question paper contains SIX (6) questions in ELEVEN (11) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided.
- 4. Write answer to each question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.
- 6. Use at least **4 significant numbers** in all calculations.

THIS QUESTION PAPER CONSISTS OF ELEVEN (11) PRINTED PAGES INCLUDING THIS COVER PAGE AND APPENDIX.

Question 1 [16 marks]

(a) Consider the Widlar current source as in Figure 1a. Let $I_O = 20 \ \mu A$ and $R_E = 4.2k\Omega$. Neglect base currents and assume $I_{S1} = 4 \ x \ 10^{-15} A$. Determine I_{REF} , V_{BE1} , V_{BE2} , and R_1 . [8 marks]

Figure 1a

(b) Refer to Figure 1b. Consider the cascode current source with parameters $V^+ = 5$ V, V = -5 V, and $I_{REF} = 200 \ \mu$ A at $V_{GS1} = 1.8$ V. All transistors are matched and operating in saturation region with parameters $g_m = 0.3 \ \text{mA/V}^2$ and $\lambda = 0.025 \text{V}^{-1}$. Determine I_o at $V_{D4} = +2.5$ V.

[8 marks]

Figure 1b

Question 2 [16 marks]

(a) The basic differential pair is shown in Figure 2a. It is given that $V^+ = 15$ V, V = -15 V, $R_C = 5$ k Ω , $I_Q = 2$ mA, and transistor parameters are $\beta = 100$, $V_A = 100$ V, $V_{BE}(on) = 0.7$ V, $V_{CE}(sat) = 0.3$ V.

Figure 2a

- (i) **Calculate** the **one-sided** small-signal differential voltage gain (A_d) of the differential amplifier. [2 marks]
- (ii) The constant current source of Figure 2a that is providing the current I_Q is implemented using the <u>basic two transistor current source</u>. Find the value of A_{cm} , the common-mode voltage gain of the differential-amplifier, using equation given below. Assume $R_B = 0$. [2 marks]

$$A_{cm} = \frac{-g_{m}R_{c}}{1 + \frac{2(1+\beta)R_{o}}{r_{\pi} + R_{B}}}$$

- (iii) The input voltages for the differential amplifier are $v_{B1} = 210 \times 10^{-6} \sin \omega t V$ and $v_{B2} = 190 \times 10^{-6} \sin \omega t V$. Calculate the output voltage of the differential amplifier applying superposition theorem, taking into account the effect of the non-ideal current source. Use values from previous calculations. What is the output voltage if an ideal current source is used instead? Justify your answer. [4 marks]
- (iv) **Calculate** the value of *Vcm*(max) of this differential amplifier. [4 marks]

(b) The differential amplifier shown in Figure 2b has a three-transistor current mirror connected as an active load. The circuit is connected to power supply voltages of $V^+ = +5$ V and $V^- = -5$ V.

- 8
- (i) **Determine** the relationship between I_0 and I_Q such that the amplifier **dc currents are balanced**. [3 marks]
- (ii) **Calculate** the value of I_0 given that $I_0 = 0.2$ mA and $\beta = 100$. [1 mark]

Question 3 [16 marks]

Figure 3 shows a differential amplifier circuit with active loads and biased by a current source using MOSFET. Transistors M_1 and M_2 are driven into saturation with $V_{DS}(\text{sat}) = 1.12$ V. The active load transistors (M_3 and M_4) are matched with parameters $K_p = 0.1 \text{ mA/V}^2$, $V_{TP} = -2$ V, and $\lambda_p = 0.02 \text{ V}^{-1}$. Transistors M_5 , M_6 and M_7 are identical. All the NMOS transistors have the same $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 2$ V, and $\lambda_n = 0.015 \text{ V}^{-1}$.

Figure 3

- (a) Determine I_1, I_Q , and I_{D1} when $v_1 = v_2 = 0$. [5 marks]
- (b) Determine the **one-sided differential mode voltage gain** (A_d) for the differential amplifier if $R_L = 100 \text{ k}\Omega$. [6 marks]
- (c) It is required that the CMRR of the circuit to be 60 dB. What is the common mode voltage gain (A_{cm})? [3 marks]
- (d) **Suggest 2 ways** to improve the **CMRR** for the circuit in the **Figure 3**. [2 marks]

Question 4 [16 marks]

Consider the input stage and bias circuit of the 741 operational amplifier in Figure 4a, with $V^+ = 5$ V and V = -5 V, $V_A = 50$ V, $V_{BE6} = V_{BE7} = 0.6$ V, $\beta = 200$ and $I_{C9} = 10 \ \mu$ A. The reverse saturation current $I_S = 10^{-14}$ A for each transistor and the current flow through resistor R_5 is 0.4 mA. Ignore the base currents for dc calculations and assume the dc currents in the input stage are exactly balanced.

(a) What is the purpose of Q_3 and Q_4 in the circuit?[2 marks](b) Determine the resistance R_4 .[4 marks](c) Calculate the value of $r_{\pi 6}$.[2 marks]

Figure 4a

(d) Figure 4b shows the ac equivalent circuit of the input stage of the 741 op-amp shown in the Figure 4a. Determine the effective output resistance, R_0 , looking at v_{o1} . Neglect the effective resistances in the emitters of Q_4 and Q_2 .

(Hint: The output resistance (R_0) of a Widlar current source can be calculated using the following formula: $R_0 = r_o [1 + g_m (r_\pi || R_E)]$).

[8 marks]

Figure 4b

Question 5 [16 marks]

- (a) State the main disadvantage of both Class A and Class B output stages. Comment on the power conversion efficiency of both output stages. [2 marks]
- (b) The circuit parameters for the **emitter follower** circuit in Figure 5 is $V^+ = 10$ V, V = -10 V, and $R_L = 1$ k Ω . The transistor parameters are $V_{BE}(\mathbf{on}) = 0.7$ V, $V_{CE}(\mathbf{sat}) = 0.2$ V, and $V_A = \infty$. Neglect base currents. The **output voltage** is varying from -8 V to +8 V.

- (i) Find the required I_Q and the value of R. [4 marks]
- (ii) For $v_0 = 0$ V, find the power dissipated in the transistor Q_1 , and the power dissipated in the current source (Q_2, Q_3 , and R). [5 marks]
- (iii) Determine the conversion efficiency for a symmetric sine-wave output voltage with peak value of 8 V. [5 marks]

Question 6 [20 marks]

(a) Find the voltage gain, $A_v = v_0/v_I$, for the circuit in Figure 6a. Assume that the op-amp is ideal. [5 marks]

0

(b) Consider the two inverting op-amp circuit connected in cascade as shown in Figure 6b. Let $R_1 = 20 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 150 \text{ k}\Omega$, and $R_4 = 60 \text{ k}\Omega$. Find v_0 when $v_I = 0.12 \text{ V}$.

[4 marks]

(c) Figure 6c, in next page, shows a design for an instrumentation amplifier using op-amps. In the design, R_{1POT} is a 100 k Ω potentiometer (or a variable resistor) used to provide variable resistance so that differential voltage gain (A_{ν}) of the instrumentation amplifier can be adjustable. With analysis, it can be shown that

$$v_{O} = \frac{R_{4}}{R_{3}} \left(1 + \frac{2R_{2}}{R_{1} + R_{1POT}} \right) (v_{I2} - v_{I1})$$

Figure 6c

- (i) What is the name of an amplifier represented by op-amp A_3 , R_3 , and R_4 in the Figure 6c? [1 mark]
- (ii) With $R_3 = R_4 = 100 \text{ k}\Omega$, design an instrumentation amplifier using the circuit as shown in the Figure 6c to realize a differential voltage gain (A_ν) adjustable from 10 to 100. (Hints: A_ν is smallest when R_{1POT} is at maximum value. You are required to determine the value of R_1 and R_2 in the circuit). [7 marks]
- (iii) With $v_{I1} = 1.00$ V, $v_{I2} = 1.15$ V, $R_4 = 2 R_3$, R_{1POT} is set at 40 k Ω , and using the values of R_1 and R_2 found in step (ii) above, calculate A_v and v_o . [3 marks]

-END OF QUESTION PAPER-

APPENDIX

BASIC FORMULA

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$

$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$

$$i_{C} = \alpha i_{E} = \beta i_{B}$$

$$i_{E} = i_{B} + i_{C}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$
; P – MOSFET
 $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$
 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_{?}I_{DQ}}$$
$$r_o \cong \frac{1}{\lambda I_{DQ}}$$