EEEB273 - Quiz 1 [Question Set 1] SEMESTER 1, ACADEMIC YEAR 2012/2013 Date: 12 June 2012 Name:Dr JBOStudent ID Number:Model answerSection:01A / 01B / 02A / 02BLecturer:Dr. Jamaludin Bin Omar

Question:

Given that matched **npn transistors** are available with the parameters: $\beta = 50$, V_{BE} (on) = 0.6 V, and $V_A = 150$ V. These transistors are used in the designs of a two-transistor current source (as shown in Figure 1) and a three-transistor current source (as shown in Figure 2). Power supplies used to power the current sources are: $V^+ = 7.5$ V and $V^- = -7.5$ V.

- (a) **Design** a two-transistor current source and a three-transistor current source with $I_{REF} = 0.90$ mA using the npn transistors mentioned above. [4 marks]
- (b) Find the output resistance (R_0) of the two-transistor current source and the three-transistor current source. [6 marks]

Show clearly all calculations.

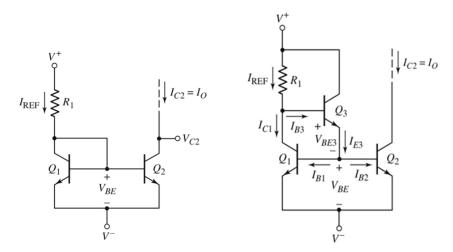


Figure 1

Figure 2

2T:	<i>R</i> ₁	$= (V^{+} - V_{EB} - V^{-}) / I_{REF}$ = (7.5 - 0.6 - (-7.5)) / (0.90m)	= 16.000 kΩ	[1] [0.5, 0.5]
3T:	<i>R</i> ₁	= $(V^+ - 2V_{EB} - V^-) / I_{REF}$ = $(7.5 - 2(0.6) - (-7.5)) / (0.90m)$	= 15.333 kΩ	[1] [0.5, 0.5]
2T:	Io	$= I_{REF} / (1 + 2/\beta)$		[1]
		= (0.90 m) / (1 + 2/50)	= 0.8654 mA	[0.5]
	R_O	$= V_A / I_O$		[1]
		=(150) / (0.8654m)	= 173.333 kΩ	[0.5]
3T:	I_0	$= I_{REF} / [1 + 2/\beta(\beta+1)]$		[1]
		= (0.90 m) / [1 + 2/50(50+1)]	= 0.8993 mA	[0.5]
	R_O	$= V_A / I_O$		[1]
		= (150) / (0.8993m)	= 166.797 kΩ	[0.5]

EEEB273 - Quiz 1 [Question Set 2] SEMESTER 1, ACADEMIC YEAR 2012/2013 Date: 12 June 2012 Name:Dr JBOStudent ID Number:Model answerSection:01A / 01B / 02A / 02BLecturer:Dr. Jamaludin Bin Omar

Question:

Given that matched **npn transistors** are available with the parameters: $\beta = 50$, V_{BE} (on) = 0.6 V, and $V_A = 150$ V. These transistors are used in the designs of a two-transistor current source (as shown in Figure 1) and a three-transistor current source (as shown in Figure 2). Power supplies used to power the current sources are: $V^+ = 8.5$ V and $V^- = -8.5$ V.

- (a) **Design** a two-transistor current source and a three-transistor current source with $I_{REF} = 0.95$ mA using the npn transistors mentioned above. [4 marks]
- (b) Find the output resistance (R_0) of the two-transistor current source and the three-transistor current source. [6 marks]

Show clearly all calculations.

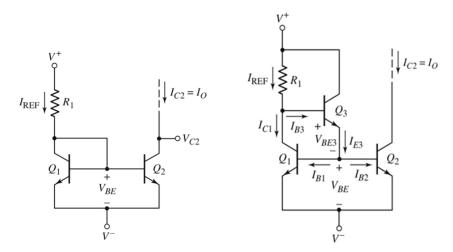


Figure 1

Figure 2

2T:	<i>R</i> ₁	$= (V^{+} - V_{EB} - V^{-}) / I_{REF}$ = (8.5 - 0.6 - (-8.5)) / (0.95m)	= 17.263 kΩ	[1] [0.5, 0.5]
3T:	<i>R</i> ₁	$= (V^{+} - 2V_{EB} - V^{-}) / I_{REF}$ = (8.5 - 2(0.6) - (-8.5)) / (0.95m)	= 16.632 kΩ	[1] [0.5, 0.5]
2T:	Io	$=I_{REF}/(1+2/\beta)$		[1]
		= (0.95m) / (1 + 2/50)	= 0.9135 mA	[0.5]
	R_{O}	$= V_A / I_O$		[1]
	Ū	=(150)/(0.9135m)	= 164.211 k Ω	[0.5]
3T:	I_0	$= I_{REF} / [1 + 2/\beta(\beta+1)]$		[1]
		= (0.95m) / [1 + 2/50(50+1)]	= 0.9493 mA	[0.5]
	R_O	$= V_A / I_O$		[1]
		=(150)/(0.9493m)	= 158.019 kΩ	[0.5]

EEEB273 - Quiz 1 [Question Set 3] SEMESTER 1, ACADEMIC YEAR 2012/2013 Date: 12 June 2012 Name:Dr JBOStudent ID Number:Model answerSection:01A / 01B / 02A / 02BLecturer:Dr. Jamaludin Bin Omar

Question:

Given that matched **npn transistors** are available with the parameters: $\beta = 60$, V_{BE} (on) = 0.6 V, and $V_A = 150$ V. These transistors are used in the designs of a two-transistor current source (as shown in Figure 1) and a three-transistor current source (as shown in Figure 2). Power supplies used to power the current sources are: $V^+ = 8.5$ V and $V^- = -8.5$ V.

- (a) **Design** a two-transistor current source and a three-transistor current source with $I_{REF} = 0.90$ mA using the npn transistors mentioned above. [4 marks]
- (b) Find the output resistance (R_0) of the two-transistor current source and the three-transistor current source. [6 marks]

Show clearly all calculations.

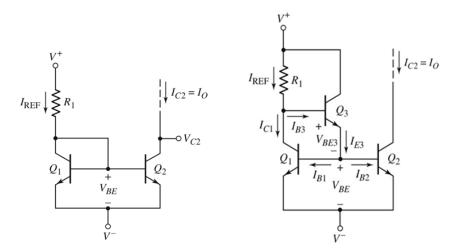


Figure 1

Figure 2

2T:	<i>R</i> ₁	$= (V^{+} - V_{EB} - V^{-}) / I_{REF}$ = (8.5 - 0.6 - (-8.5)) / (0.90m)	= 18.222 kΩ	[1] [0.5, 0.5]
3T:	<i>R</i> ₁	= $(V^+ - 2V_{EB} - V^-) / I_{REF}$ = $(8.5 - 2(0.6) - (-8.5)) / (0.90m)$	= 17.556 kΩ	[1] [0.5, 0.5]
2T:	Io	$=I_{REF}/(1+2/\beta)$		[1]
		= (0.90 m) / (1 + 2/60)	= 0.8710 mA	[0.5]
	R_{O}	$= V_A / I_O$		[1]
		=(150)/(0.8710m)	= 172.222 kΩ	[0.5]
3T:	Io	$= I_{REF} / [1 + 2/\beta(\beta+1)]$		[1]
		= (0.90 m) / [1 + 2/60(60+1)]	= 0.8995 mA	[0.5]
	R_O	$= V_A / I_O$		[1]
		=(150)/(0.8995m)	= 166.758 kΩ	[0.5]

EEEB273 - Quiz 1 [Question Set 4] SEMESTER 1, ACADEMIC YEAR 2012/2013 Date: 12 June 2012 Name:Dr JBOStudent ID Number:Model answerSection:01A / 01B / 02A / 02BLecturer:Dr. Jamaludin Bin Omar

Question:

Given that matched **npn transistors** are available with the parameters: $\beta = 60$, V_{BE} (on) = 0.6 V, and $V_A = 150$ V. These transistors are used in the designs of a two-transistor current source (as shown in Figure 1) and a three-transistor current source (as shown in Figure 2). Power supplies used to power the current sources are: $V^+ = 7.5$ V and $V^- = -7.5$ V.

- (a) **Design** a two-transistor current source and a three-transistor current source with $I_{REF} = 0.95$ mA using the npn transistors mentioned above. [4 marks]
- (b) Find the output resistance (R_0) of the two-transistor current source and the three-transistor current source. [6 marks]

Show clearly all calculations.

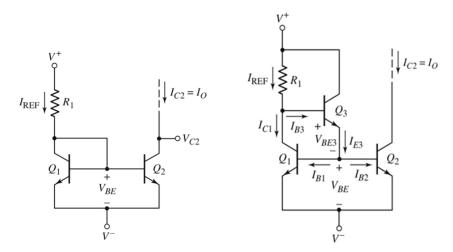


Figure 1

Figure 2

2T:	<i>R</i> ₁	$= (V^{+} - V_{EB} - V^{-}) / I_{REF}$ = (7.5 - 0.6 - (-7.5)) / (0.95m)	= 15.158 kΩ	[1] [0.5, 0.5]
3T:	R ₁	$= (V^{+} - 2V_{EB} - V^{-}) / I_{REF}$ = (7.5 - 2(0.6) - (-7.5)) / (0.95m)	= 14.526 kΩ	[1] [0.5, 0.5]
2T:	Io	$= I_{REF} / (1 + 2/\beta)$		[1]
		= (0.95 m) / (1 + 2/60)	= 0.9194 mA	[0.5]
	R_{O}	$= V_A / I_O$		[1]
	Ũ	= (150) / (0.9194m)	= 163.158 kΩ	[0.5]
3T:	Io	$= I_{REF} / [1 + 2/\beta(\beta+1)]$		[1]
		= (0.95 m) / [1 + 2/60(60+1)]	= 0.9495 mA	[0.5]
	R_O	$= V_A / I_O$		[1]
		=(150)/(0.9495m)	= 157.981 kΩ	[0.5]