

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 2 2012 / 2013

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: January 2013
TIME	: 3 hours

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **Five** (5) questions in **Ten** (10) pages.
- 2. Answer ALL questions.
- 3. Write **all** answers in the answer booklet provided.
- 4. Write answer to different question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.
- 6. Use at least **4 significant numbers** in all calculations.

THIS QUESTION PAPER CONSISTS OF TEN (10) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [15 marks]

- (a) For a BJT Cascode current source (using npn transistors) with $R_1 = 9.3 \text{ k}\Omega$, the transistor parameters are $V_{BE}(\text{on}) = 0.7 \text{ V}$, $\beta = 120$, and $V_A = 100 \text{ V}$. The bias voltages are $V^+ = 5 \text{ V}$ and V = -5 V.
 - (i) Draw the circuit for the BJT Cascode current source specified above. Label the circuit clearly.
 [2 marks]
 - (ii) Show that the relationship between I_O and I_{REF} can be given by the following equation. [5 marks]

$$I_O \cong \frac{I_{REF}}{1 + 4/\beta}$$

<u>Hints</u>: You may start by using equation $I_{E4} = I_{E3} / (1+2/\beta)$ derived for a BJT twotransistor current source.

- (b) A MOSFET two-transistor (using NMOS) current source is using a resistor to establish its I_{REF} . The output current (I_0) is 1 mA and the circuit parameters are $V^+ = 15$ V and V = -15 V. Assume all transistors are identical. The transistor parameters are $V_{DS}(\text{sat}) = 0.8$ V, $V_{TN} = 1.5$ V, $k'_n = 50 \,\mu\text{A}/\text{V}^2$ and $\lambda = 0$.
 - (i) Let the second transistor, M_2 , be the output transistor. Draw and label the circuit and its components clearly. <u>Hints</u>: You need to determine the value of R_1 in order to draw and label the circuit correctly. [2 marks]

(ii) **Calculate the aspect ratios** for all transistors. [2 marks]

- (iii) Find the change on the output current due to changes on the output voltage from 2 to 10 Volt. [2 marks]
- (iv) **Discuss how** the reference portion of the circuit can be designed with MOSFETs. [2 marks]

Question 2 [20 marks]

- (a) Consider the differential amplifier in Figure 2a where one-sided output is taken at V_{D2} . It is given that $R_D = 18 \text{ k}\Omega$, $K_n = 125 \text{ }\mu\text{A}/\text{V}^2$, $\lambda = 0$, $A_{cm} = 0.2$, and *CMRR* of the differential amplifier is 55 dB.
 - (i) Find I_Q . [6 marks]
 - (ii) Instead of increasing the value of R_D , suggest how the circuit can be modified to get a bigger *CMRR*. [3 marks]

Figure 2a

- (b) The differential amplifier shown in Figure 2b has a three-transistor current mirror connected as an active load. The circuit is connected to power supply voltages of $V^+ = +5$ V and V = -5 V.
 - (i) **Derive** the relationship between I_0 and I_Q such that the amplifier **dc currents are balanced**. State your assumptions. [9 marks]
 - (ii) **Calculate** the value of I_0 given that $I_0 = 0.2$ mA and $\beta = 120$. [2 marks]

Figure 2b

Question 3 [25 marks]

(a) A simple **bipolar op-amp** is designed as shown in **Figure 3a**. <u>Note that biasing for amplifiers</u> in the circuit is provided by two-transistor current mirrors. Study the figure carefully. **Neglect base currents**. Assume parameters for all transistors are: $V_{BE}(on) = 0.7 \text{ V}, \beta = 120$, and $V_A = \infty$.

Figure 3a

- (i) Referring to Figure 3a, find I_1 , I_0 , I_{C2} , v_{02} , and v_{03} . [5 marks]
- (ii) With small-signal analysis values for A_{d1} , $r_{\pi 3}$, R_{i2} , and A_2 can be found using the following formula:

$$A_{d1} = \left(\frac{V_{o2}}{v_d}\right) = \frac{g_m}{2} \left(R_C \| R_{i2}\right)$$
$$r_{\pi 3} \cong \beta r_{\pi 4}$$
$$R_{i2} = r_{\pi 3} + (1+\beta)r_{\pi 4}$$
$$A_2 \cong \frac{I_{R4}}{2V_T} \left(R_5\right)$$

Calculate A_{d1} , A_2 , and the total overall small-signal voltage gain, A_d .

[10 marks]

[3 marks]

- (b) Consider the MC14573 op-amp in Figure 3b. Assume transistors parameters of $V_{TN} = 0.5$ V, $V_{TP} = -0.5$ V, $K_n = 125 \ \mu A/V^2$, $K_p = 100 \ \mu A/V^2$, $V_{SG5} = 1.5$ V, $\lambda_n = 0.01 V^{-1}$, $\lambda_p = 0.02 V^{-1}$ and the circuit parameters of $V^+ = 10$ V, V = -10 V.
 - (i) Find the dc bias currents I_Q .
 - (ii) **Determine** the **overall voltage gain** of the op-amp. [7 marks]

Figure 3b

Question 4 [15 marks]

Study the output stage circuit shown in Figure 4 carefully. Let $R_L = 1 \text{ k}\Omega$, $V_{BB} = 1.40 \text{ V}$ and the reverse saturation current for the transistors, $I_S = 2 \times 10^{-15} \text{ A}$. Assume $\beta >> 1$.

(a) **Explain** the õcross-over distortionö phenomenon in **class-B output stage**.

[3 marks]

- (b) What is the advantage of the output stage shown in Figure 4 compared to the class-A and class-B output stages? [2 marks]
- (c) Referring to Figure 4, for the case of the output voltage $v_0 = -3.5$ V, determine i_L , i_{Cp} , and i_{Cn} . [6 marks]
- (d) Referring to Figure 4, for the case of the output voltage $v_0 = -3.5$ V, calculate the power dissipated in transistor Q_n and Q_p . [4 marks]

Figure 4

Question 5 [25 marks]

- (a) List two (2) ideal operational amplifier characteristics. [2 marks]
- (b) State three (3) applications of an ideal operational amplifier. [3 marks]
- (c) For an **amplifier circuit** using op-amps shown in **Figure 5a**, use appropriate ideal op-amp characteristics and **superposition theorem** to show that

$$v_0 = v_{I1} + v_{I2}$$

when $R_1 = R_2 = R_F = 100 \text{ k}\Omega.$ [7 marks]

Figure 5a

(d) Find the voltage gain, A_{ν} , for the op-amp circuit in Figure 5b. Assume the op-amp is ideal. [5 marks]

Figure 5b

(e) For a generalized summing op-amp as shown in Figure 5c the total output voltage (v₀) is the sum of the individual terms, or

$$v_{O} = -\frac{R_{F}}{R_{1}}v_{I1} - \frac{R_{F}}{R_{2}}v_{I2} + \left(1 + \frac{R_{F}}{R_{N}}\right)\left(\frac{R_{P}}{R_{A}}v_{I3} + \frac{R_{P}}{R_{B}}v_{I4}\right)$$
$$R_{N} = R_{1}||R_{2}$$

where

$$R_P = R_A \|R_B\|R_C$$

Design a summing op-amp similar to Figure 5c to produce the output

$$v_O = -5v_{I1} - 10v_{I2} + 5v_{I3} + 2v_{I4}$$

The smallest resistor value allowable in the design is $15 \text{ k}\Omega$.

[8 marks]

Figure 5c

-END OF QUESTION PAPER-

APPENDIX

BASIC FORMULA

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$

$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$

$$i_{C} = \alpha i_{E} = \beta i_{B}$$

$$i_{E} = i_{B} + i_{C}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

MOSFET

; N – MOSFET

$$v_{DS}$$
 (sat) = $v_{GS} - V_{TN}$
 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$
; P – MOSFET
 v_{SD} (sat) = $v_{SG} + V_{TP}$
 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_{\gamma}I_{DQ}}$$

 $r_o \cong \frac{1}{\lambda I_{DQ}}$