Name:	Dr JBO		5
Student ID Number	ſ:		¥
Section:		UNIVERSITI TENAGA	
Lecturer: Dr Jama	udin B Omar	NASIONAL	

College of Engineering

Department of Electronics and Communication Engineering

Test 1 – MODEL ANSWERS

SEMESTER 2, ACADEMIC YEAR 2012/2013

Subject Code	•	EEEB273
Course Title	•	Electronics Analysis & Design II
Date	•	2 November 2012
Time Allowed	•	1 ¹ / ₂ hours

Instructions to the candidates:

- 1. Write your Name and Student ID number. Circle your section number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question 1 [30 marks]

For all **BJT current sources** given in **Table 1**, all transistors are matched and have same parameters. The transistor parameters are: $\beta = 50$, $V_{BE}(on) = 0.6$ V, and $V_A = 150$ V. The circuit parameters for the current sources are: $V^+ = 10$ V, $V^- = -10$ V, and $R_1 = 24$ k Ω .

(a) Calculate reference current (I_{REF}) , output current (I_0) , and output resistance (R_0) for every BJT current source given in the Table 1 and fill in the Table 1 with your answers. Show all calculations in the area provided after the Table 1 and do not forget to put proper Units for I_{REF} , I_0 , and R_0 in the Table 1. [9 marks]

Table 1						
BJT current source	Reference current, <i>I_{REF}</i>	Output current, <i>I</i> ₀	Output resistance, R_o			
1) Three-transistor current source	0.783 mA	0.783 mA	191.57 kΩ			
2) Wilson current source	0.783 mA	0.783 mA	4.789 ΜΩ			
3) Cascode current source	0.783 mA	0.725 mA	10.3445 ΜΩ			
	F4 1 11	Tatal 0 arlaal				

[1 mark each box, Total 9 marks]

(b) Based on the value of R_0 , which current source has the most stable I_0 ? [3 marks]

Cascode [3]

(c) Show all your calculations for I_{REF} , I_O , and R_O for every BJT current source given in the Table 1 in the following space: [18 marks]

Three-transistor current source	Wilson current source	Cascode current source
$I_{REF} = (V^+ - 2 V_{B_i})$ same for all	$(E - V^{-})/R_1 = (10 - 2x0.6 - (-10))$ CS	(24k) = 0.783 mA
$I_O = I_{REF} / (1 + 2/(\beta(1+\beta)))$ = (0.783m)/(1+2/(50x51)) = 0.783 mA	$I_O = I_{REF} / (1 + 2/(\beta(2+\beta)))$ = (0.783m)/(1+2/(50x52)) = 0.783 mA	$I_O = I_{REF} / (1 + 4/\beta)$ = (0.783m)/(1+4/(50)) = 0.725 mA
$r_{O2} = V_A / I_O$ = 150/(0.783m) = 191.57 k Ω	$r_{O3} = V_A / I_O$ = 150/(0.783m) = 191.57 k Ω	$r_{O4} = V_A / I_O$ = 150/(0.725m) = 206.89 kΩ
$R_0 = r_{02}$ = 191.57 k Ω	$R_O = (\beta r_{O3})/2$ = (50 x 191.57k)/2 = 4.789 MΩ	$R_0 = \beta r_{04}$ = 50x206.89k = 10.3445 MΩ

[2 mark each box, Total 18 marks]

Answer for Question 1

Question 2 [30 marks]

For a MOSFET current source circuit shown in Figure 2, the transistor parameters are $V_{TN} = 0.7$ V, $k'_n = 60 \ \mu A/V^2$, and $\lambda = 0.015$ V⁻¹. The transistor aspect ratios are $(W/L)_1 = 20$, $(W/L)_2 = 12$, and $(W/L)_3 = 3$.

- (a) Determine V_{GS1} , I_{REF} , I_O , and V_{DS2}
- (b) Find V_{GS3}
- (c) Find I_0 at $V_{DS2} = 3.0$ V

Answer for Question 2

(a)

$$I_{REF} = \frac{k_n}{2} \left(\frac{W}{L} \right)_1 \left(V_{GS1} - V_{TN} \right)^2$$

$$I_{REF} = \frac{60\mu}{2} (20) \left(V_{GS1} - 0.7 \right)^2$$
[2]

$$k^{(W)}(W)(W,W)^{2}$$

$$I_{REF} = \frac{\kappa_n}{2} \left(\frac{W}{L} \right)_3 (V_{GS3} - V_{TN})^2$$

$$I_{REF} = \frac{60\mu}{3} (3) (V_{GS2} - 0.7)^2$$
[2]

$$V_{GS1} + V_{GS3} = V^+ - V^- = 10$$

$$V_{GS3} = 10 - V_{GS1}$$
[2]
20 $(V_{GS1} - 0.7)^2 = 3(10 - V_{GS1} - 0.7)^2$

$$V_{GS1} = 3.1 \text{ V}$$
[2]
$$V_{GS1} = 60\mu (20) (2 + 0, 7)^2 + 2.456 \text{ A} (2)$$

$$I_{REF} = \frac{36\mu}{2} (20) (3.1 - 0.7) = 3.456 \text{ mA} [2]$$
$$V_{GS2} = V_{GS1} = 3.1 \text{ V}$$
[3]

$$I_o = \frac{k_n}{2} \left(\frac{W}{L} \right)_2 \left(V_{GS2} - V_{TN} \right)^2$$
[2]

$$I_o = \frac{60\mu}{2} (12) \left(3.1 - 0.7 \right)^2 = 2.073 \, \text{mA} \quad [3]$$

$$V_{DS2} = V_{DS1} = V_{GS1} = 3.1 \,\mathrm{V}$$
[2]

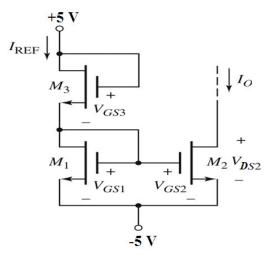


Figure 2

[20 marks]

[5 marks]

[5 marks]

Answer for Question 2

(b)
$$V_{GS3} = 10 - V_{GS1} = 6.9 \text{ V}$$
 [5]

(c)
$$I_0 = 2.073 \text{ mA at } V_{DS2} = 3.1 \text{ V}$$
 [1]

$$R_0 = 1/(\lambda I_0) = 1/(0.015 \text{ x } 2.073 \text{m}) = 32.159 \text{ k}\Omega$$
 [1]

At
$$V_{DS2} = 3.0$$
 V,
 $\Delta I_O = (3.0 - 3.1)/R_O = -0.003$ mA [2]

→
$$I_0 = 2.073 \text{m} + (-0.003 \text{m}) = 2.070 \text{ mA}$$
 [1]

Question 3 [40 marks]

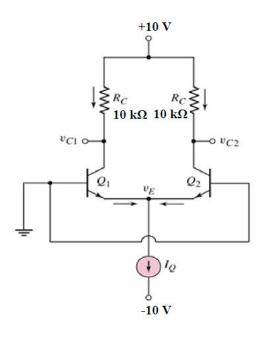
- (a) Figure 3a shows a circuit diagram for a BJT differential amplifier (diff-amp). Study the circuit diagram carefully. Transistor parameters are: $\beta = \infty$ (neglect base current), $V_A = \infty$, and $V_{BE}(on) = 0.7$ V. For the circuit also, voltages measured at v_{C1} and v_{C2} are 4.5 V.
 - What are the values for v_{cm} and v_d ? Show clearly your calculations. (i) [5 marks]
 - [10 marks] (ii) Find I_Q
 - (iii) Find v_{CE2}

Answer for Question 3a

(a)
(i)
From Figure 3a:

$$v_{B1} = v_{B2} = 0 V$$
 [1]
 $\rightarrow v_{cm} = (v_{B1} + v_{B2})/2 = 0 V$ [2]

$$\Rightarrow \quad v_d = v_{B1} - v_{B2} = 0 \text{ V}$$
 [2]


(

Given: $v_{C1} = v_{C2} = 4.5 \text{ V}$

 $10 - I_{C1}R_C = v_{C1} = 4.5 \text{ V}$ [4]

$$\Rightarrow I_{C1} = 0.55 \text{ mA} = I_{C2}$$
 [3]

→
$$I_Q = I_{C1} + I_{C2} = 1.1 \text{ mA}$$
 [3]

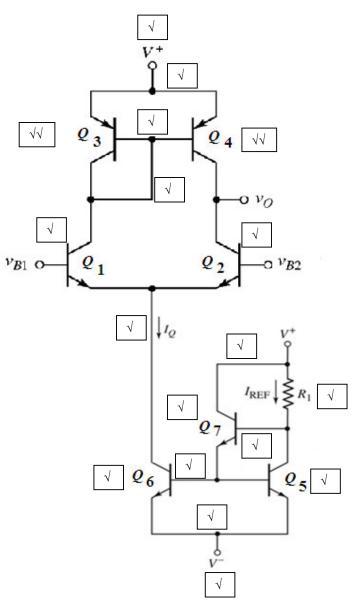
[5 marks]

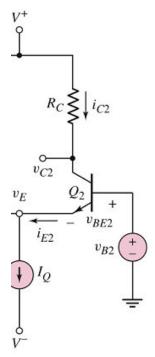
Figure 3a

(iii)

Given: $v_{C2} = 4.5 \text{ V}$

$$v_{CE2} = v_{C2} - v_E$$
 [2]


$$v_E = v_{B2} - V_{BE}(\text{on}) = 0 - 0.7 = -0.7 \text{ V} [2]$$


→
$$v_{CE2} = v_{C2} - v_E = 4.5 - (-0.7) = 5.2 \text{ V}$$
 [1]

(b) The differential amplifier in Figure 3b is modified to have a two-transistor current source using **pnp transistors** as **an active load** to replace the passive load resistors R_c . A three-transistor current source using **npn transistors** is also incorporated in the circuit to establish the bias current, I_Q . Draw the complete NEW circuit after the circuit in the Figure 3b is modified to have the active load and also incorporating the bias circuit mentioned above.

[20 marks]

Answer for Question 3b

'igure 3b

APPENDIX

BASIC FORMULA

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$

$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$

$$i_{C} = \alpha i_{E} = \beta i_{B}$$

$$i_{E} = i_{B} + i_{C}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CO}}$$

MOSFET

; N – MOSFET

$$v_{DS}$$
 (sat) = $v_{GS} - V_{TN}$
 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$
; P – MOSFET
 v_{SD} (sat) = $v_{SG} + V_{TP}$
 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_2 I_{DQ}}$$

 $r_o \cong \frac{1}{\lambda I_{DQ}}$