Name: **Dr JBO**

Student ID Number: Section: **01/02 A/B**

Lecturer: Dr Jamaludin Omar

College of Engineering

Department of Electronics and Communication Engineering

Test 2 – Model Answers

SEMESTER 2, ACADEMIC YEAR 2012/2013

Subject Code : **EEEB273**

Course Title : Electronics Analysis & Design II

Date : **30 November 2012**

Time Allowed : 1½ hours

Instructions to the candidates:

- 1. Write your Name and Student ID number. Circle your section number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.
- 5. For BJT, use $V_T = 26 \text{ mV}$ where appropriate.
- 6. Use at least 4 significant numbers in all calculations.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question No.	1	2	3	Total
Marks				

Question 1 [30 marks]

The bias voltages in the differential amplifier shown in **Figure 1** are $V^+ = 3$ V and $V^- = -3$ V. The transistor parameters are $K_{n1} = K_{n2} = 100 \, \mu\text{A/V}^2$, $K_{n3} = K_{n4} = 200 \, \mu\text{A/V}^2$, $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = \lambda_4 = 0.01$ V⁻¹ and $V_{TN} = 0.3$ V for all transistors.

- a) **Design** the circuit such that $V_{DS1} = V_{DS2} = 3.8 \text{ V}$ and $I_{D1} = I_{D2} = 60 \text{ }\mu\text{A}$ when $v_1 = v_2 = -1.2 \text{ V}$. [20 marks]
- b) Calculate the change in I_Q if $v_1 = v_2 = +0.8$ V.

[**10** marks]

Figure 1

Answers for Question 1

(a)

$$R_D = (V^+ - V_{O1}) / I_{D1}$$
 [2]

$$I_{D1} = K_{n1} (V_{GS1} - V_{TN})^2$$
 [2]

$$60\mu = (100\mu)(V_{GS1} - 0.3)^2$$
 [1]

$$V_{GS1} = 1.075 \text{ V}$$
 [1]

$$V_{O1} = V_1 - V_{GS1} + V_{DS1}$$
 [2]

$$= (-1.2) - 1.075 + 3.8 = 1.525 \text{ V}$$
 [1]

$$R_D = (3 - 1.525) / 60\mu = 24.583 \text{ k}\Omega$$
 [1]

$$R_1 = (V^+ - V_{GS3} - V) / I_1$$
 [2]

$$I_1 = I_0 \tag{1}$$

$$=I_{D1}+I_{D2}$$
 $=60\mu+60\mu=120 \mu A$ [2]

$$I_1 = K_{n3} (V_{GS3} - V_{TN})^2$$
 [2]

$$120\mu = (200\mu)(V_{GS1} - 0.3)^2$$
 [1]

$$V_{GS3} = 1.075 \text{ V}$$
 [1]

$$R_1 = (3 - 1.075 - (-3)) / 120\mu = 41.041 \text{ k}\Omega$$
 [1]

(b)

Output resistance of the current source,

$$R_0 = r_{04} = 1/(\lambda_4 I_0)$$
 [2]

=
$$1 / (0.01 \times 120 \mu)$$
 = $833.333 \text{ k}\Omega$ [1]

$$R_O = \Delta V_{DS4} / \Delta I_O$$
 [2]

$$\Delta V_{DS4} = \Delta V_{S1}$$
 = $\Delta v_1 = 0.8 - (-1.2)$ = 2 V [3]

$$\Delta I_Q = \Delta V_{DS4} / R_O \tag{1}$$

=
$$2 / [1 / (0.01 \times 120 \mu)]$$

$$= 2 \times (0.01 \times 120 \mu)$$
 $= 2.4 \mu A$ [1]

Question 2 [30 marks]

The circuit parameters for differential amplifier with active load shown in Figure 2 are $V^+ = 5$ V, $V^- = -5$ V, $A_{cm} = -0.28$, and $I_Q = 250$ μ A. The NMOS transistor parameters are $V_{TN} = 0.4$ V, $k'_n = 100$ μ A/V², $(W/L)_n = 8$, and $\lambda_n = 0.018$ V⁻¹. The PMOS transistor parameters are $V_{TP} = -0.4$ V, $k'_p = 40$ μ A/V², $(W/L)_p = 10$, and $\lambda_p = 0.02$ V⁻¹.

- a) **Determine** the output resistance R_o of the differential amplifier. [5 marks]
- b) Calculate the small-signal differential-mode voltage gain $A_d = v_o/v_d$ and CMRR of the differential amplifier. [8 marks]
- c) **Suggest** one way **to increase** the differential-mode voltage gain and **show** your new circuit and **justify** the change(s). [5 marks]
- d) Find the one-sided output voltage (v_O) taken at v_{D2} of the differential amplifier when $v_1 = (0.10 + 0.05 \sin \omega t)$ mV and $v_2 = (-0.15 + 0.05 \sin \omega t)$ mV. [12 marks]

Figure 2

Answers for Question 2

(a)

$$I_D = I_O / 2 = 250 \mu / 2$$
 = 125 μ A [1]

$$r_{o2} = 1/(\lambda_n I_D) = 1/[(0.018)(125\mu)] = 444.44 \text{ k}\Omega$$
 [1]

$$r_{o4} = 1 / (\lambda_p I_D) = 1 / [(0.02)(125\mu)] = 400.00 \text{ k}\Omega$$
 [1]

$$R_o = r_{o2} \| r_{o4} = 444.44 k \| 400.00 k = 210.52 k\Omega$$
 [2]

(b)

$$R_o = r_{o2} \| r_{o4}$$
 = 210.52 k Ω [0.5]

$$g_m = 2\sqrt{[K_n I_D]} = 2\sqrt{[(k'_n/2)(W/L)_n(I_Q/2)]}$$
 [2]

=2
$$\sqrt{[(100\mu/2)(8)(125\mu)]}$$
 = 0.4472 mA/V² [1]

$$A_d = g_m R_o = (0.4472 \text{m})(210.52 \text{k}) = 94.144$$
 [2.5]

CMRR =
$$|A_d/A_{cm}| = 94.144/0.28 = 336.228$$
 [2]

(c)

Increase voltage gain by using cascode active load. [1]

 $A_d = g_m R_o$

$$Previous R_o = r_{o2} \parallel r_{o4}$$
 [1]

New circuit $R_o = r_{o2} \parallel R_o$ (active load) = $r_{o2} \parallel g_m r_{o4} r_{o6} \equiv r_{o2}$

The new R_o is larger than the previous one. [1]

Answers for Question 2 (Cont.)

(d)

$$v_d = v_1 - v_2 \tag{1}$$

$$= (0.10 + 0.05 \sin \omega t) - (-0.15 + 0.05 \sin \omega t)$$
 [2]

$$= 0.25 \text{ mV}$$
 [1]

$$v_{cm} = (v_1 + v_2)/2 ag{1}$$

$$= [(0.10 + 0.05 \sin \omega t) + (-0.15 + 0.05 \sin \omega t)]/2$$
 [2]

$$= (-0.025 + 0.05 \sin \omega t) \text{ mV}$$
 [1]

$$v_O = A_d v_d + A_{cm} v_{cm} ag{1}$$

=
$$(94.144)(0.25\text{mV}) + (-0.28)(-0.025 + 0.05 \sin \omega t \text{ mV})$$
 [2]

$$= (23.543 - 0.014 \sin \omega t) \text{ mV}$$
 [1]

Question 3 [40 marks]

Figure 3

Consider the circuit shown in **Figure 3**, with parameters $I_{C7} = I_Q = 0.2$ mA, $I_{C8} = 1$ mA, and $R_2 = 12$ k Ω . Study the figure carefully. *Note that biasing for amplifiers in the circuit is provided by two-transistor current mirrors*. Assume that $\beta = 100$ for all transistors, and the **Early voltage** for Q_7 and Q_{11} is 100 V.

(a) With small-signal analysis, input resistance (R_i) of the **Darlington pair** can be given by:

$$R_i = r_{\pi 6} + r_{\pi 7} (1 + \beta)$$
 {Equation 3.1}

Show that R_i can also be calculated using the following equation: [10 marks]

$$R_i = \frac{2(1+\beta)\beta V_T}{I_O}$$
 {Equation 3.2}

(b) Calculate the input resistance (R_i) of the Darlington pair. [6 marks]

(c) With the small-signal analysis also, voltage gain (A_{ν}) of the **Darlington pair** can be found using:

$$A_{v} = \frac{\beta(1+\beta)R_{L7}}{R_{i}}$$
 {Equation 3.3}

where R_{L7} is the parallel combination of the resistance looking into collector of Q_{11} (denoted as R_{c11}) and the resistance looking into base of Q_8 (denoted as R_{b8}). Show that the voltage gain A_{ν} can also be calculated using the following equation:

[4 marks]

$$A_{v} = \left(\frac{I_{Q}}{2V_{T}}\right) R_{L7}$$
 {Equation 3.4}

(d) Calculate the voltage gain (A_{ν}) of the Darlington pair.

[10 marks]

(e) Output resistance (R_0) of the **Emitter follower** in the Figure 3 can be calculated using:

$$R_o = R_2 \left\| \left(\frac{r_{\pi 8} + Z}{1 + \beta} \right) \right\|$$
where $Z = R_{c7} R_{c11}$ (Equation 3.5)

Calculate the output resistance (R_0) of the **Emitter follower**.

[10 marks]

EEEB273 Semester 2, 2012/2013 Test 2

Answers for Question 3

a)
$$R_i = r_{\pi 6} + r_{\pi 7} (1 + \beta)$$
 [2]

$$r_{\pi 6} = \frac{\beta V_T}{I_{C6}} = \frac{\beta V_T (1+\beta)}{\beta I_{E6}} = \frac{V_T (1+\beta)}{I_{B7}} = \frac{V_T (1+\beta)}{I_{C7}} \frac{\beta}{I_{C7}} = \frac{(1+\beta)\beta V_T}{I_O}$$
[4]

$$r_{\pi 7} = \frac{\beta V_T}{I_{C7}} = \frac{\beta V_T}{I_O}$$
 [2]

$$R_{i} = \frac{(1+\beta)\beta V_{T}}{I_{Q}} + \frac{\beta V_{T}}{I_{Q}} (1+\beta) = \frac{2(1+\beta)\beta V_{T}}{I_{Q}}$$
 [2]

$$R_i = \frac{2(1+\beta)\beta V_T}{I_Q}$$
 [2]

$$R_i = \frac{2(1+100)(100)(26\text{m})}{0.2\text{m}} = 2.626 \,\text{M}\Omega$$
 [4]

$$A_{v} = \frac{\beta(1+\beta)R_{L7}}{R_{i}} = \frac{\beta(1+\beta)R_{L7}}{\frac{2(1+\beta)\beta V_{T}}{I_{Q}}} = \frac{I_{Q}}{2V_{T}}R_{L7}$$
[2, 2]

$$A_{\nu} = \frac{I_{\mathcal{Q}}}{2V_{T}} R_{L7} \tag{1}$$

$$R_{L7} = R_{c11} \parallel R_{b8}$$
 [2]

$$R_{c11} = r_{o11} = \frac{V_{A11}}{I_{C7}} = \frac{V_{A11}}{I_{O}} = \frac{100}{0.2 \text{m}} = 500 \text{ k}\Omega$$
 [2]

$$R_{b8} = r_{\pi 8} + (1 + \beta)R_2 = \frac{\beta V_T}{I_{C8}} + (1 + \beta)R_2$$
 [2]

$$R_{b8} = \frac{100(26\text{m})}{1\text{m}} + (1+100)(12\text{k}) = 1.2146 \text{ M}\Omega$$
 [1]

$$R_{L7} = 500 \,\mathrm{k}\Omega \,\mathrm{ll} \, 1.2146 \,\mathrm{M}\Omega = 354.19 \,\mathrm{k}\Omega$$

$$A_{\nu} = \frac{0.2 \text{m}}{2(26 \text{m})} (354.19 \text{k}) = 1362.28$$
 [1]

e)
$$R_O = R_2 \| \{ [r_{\pi 8} + (R_{c7} \| R_{c11})] / [(1+\beta)] \}$$
 [2]

$$r_{\pi 8} = \beta V_T / I_{C8} = (100)(0.026)/(1\text{m}) = 2.6 \text{ k}\Omega$$
 [2]

$$R_{c7} = r_{o7} = V_{A7} / I_{c7} = V_{A7} / I_{Q} = 100/0.2 \text{m} = 500 \text{ k}\Omega$$
 [2]

$$R_{c11} = r_{o11} = V_{A11} / I_{c7} = V_{A11} / I_{Q} = 100/0.2 \text{m} = 500 \text{ k}\Omega$$
 [2]

⇒
$$R_O = (12k) \| \{ [2.6k + (500k \| 500k)] / [(1+100)] \}$$

= $(12k) \| (2.50k) = 2.069 \text{ k}\Omega$ [2]

Appendix: BASIC FORMULA

BJT

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; pnp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_{\pi}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

MOSFET

; N - MOSFET
$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

$$i_D = K_n [v_{GS} - V_{TN}]^2$$

$$K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$$
; P - MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$
$$i_D = K_p [v_{SG} + V_{TP}]^2$$
$$k_D = W$$

$$K_{p} = \frac{k_{p}^{'}}{2} \cdot \frac{W}{L}$$

;Small signal

$$g_{m} = 2K_{n} (V_{GSQ} - V_{TN}) = 2\sqrt{K_{n} I_{DQ}}$$

$$r_{o} \cong \frac{1}{\lambda I_{DQ}}$$