Name:Dr JBOStudent ID Number:Model AnswerSection:Lecturer:Dr. Jamaludin Bin Omar

EEEB273 - Quiz 4 SEMESTER 1, ACADEMIC YEAR 2013/2014 Date: 2 September 2013 Time: 15 minutes

Question:

Refer to Figure 1.

- (a) **Derive** the relationship (formula) between v_I and v_O in terms of R_1 and R_2 . [6 marks]
- (b) Calculate v_0 when $R_1 = 50 \text{ k}\Omega$, $R_2 = 200 \text{ k}\Omega$ and $v_I = 0.5 \text{ V}$. [4 marks]

Show clearly all calculations in order to get full marks.

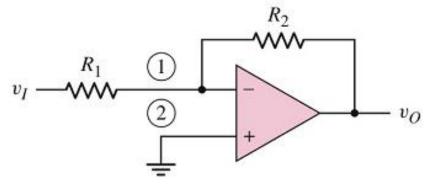


Figure 1

(a)	
$v_1 \cong v_2 = 0$	[1]
$i_1 = (v_I - v_1) / R_1 = v_I / R_1$	[2]
$i_1 = i_2$	[0.5]
$v_0 = v_1 - i_2 R_2 = 0 - (v_I / R_1) R_2$	[2]
$v_0 = -\left(R_2 / R_1\right) v_I$	[0.5]

(b)	
$v_O = -\left(R_2 / R_1\right) v_I$	[2]
= -(200 k / 50 k)(0.5 V) = -2 V	[2]

Name:Dr JBOStudent ID Number:Model AnswerSection:Image: Section Section

EEEB273 - Quiz 4 SEMESTER 1, ACADEMIC YEAR 2013/2014 Date: 2 September 2013 Time: 15 minutes

Question:

Refer to Figure 1.

- (c) **Derive** the relationship (formula) between v_I and v_O in terms of R_1 and R_2 . [6 marks]
- (d) Calculate v_I when $R_1 = 50 \text{ k}\Omega$, $R_2 = 180 \text{ k}\Omega$ and $v_0 = 2.5 \text{ V}$. [4 marks]

Show clearly all calculations in order to get full marks.

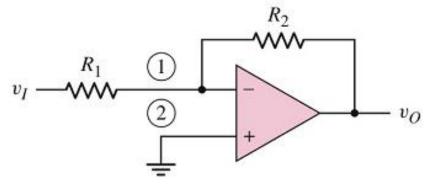


Figure 1

(a)

$$v_1 \cong v_2 = 0$$
 [1]
 $i_1 = (v_I - v_1) / R_1 = v_I / R_1$ [2]
 $i_I = i_2$ [0.5]
 $v_0 = v_1 - i_2 R_2 = 0 - (v_I / R_1) R_2$ [2]
 $v_0 = -(R_2 / R_1) v_I$ [0.5]

(b)

$$V_I = -(R_1 / R_2) v_0$$
 [2]
 $= -(50k / 180k)(2.5V) = -0.6944 V$ [2]

Name:		Dr JBO
Student ID N	Number:	Model Answer
Section:		
Lecturer:	Dr. Ja	maludin Bin Omar

EEEB273 - Quiz 4 SEMESTER 1, ACADEMIC YEAR 2013/2014 Date: 2 September 2013 Time: 15 minutes

Question:

Refer to Figure 1.

- (e) **Derive** the relationship (formula) between v_I and v_O in terms of R_1 and R_2 . [6 marks]
- (f) Calculate R_1 when $R_2 = 150 \text{ k}\Omega$, $v_1 = -0.5 \text{ V}$ and $v_0 = 2.5 \text{ V}$. [4 marks]

Show clearly all calculations in order to get full marks.

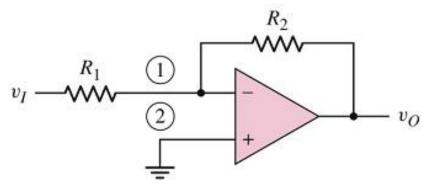


Figure 1

(a)	
$v_1 \cong v_2 = 0$	[1]
$i_1 = (v_I - v_1) / R_1 = v_I / R_1$	[2]
$i_1 = i_2$	[0.5]
$v_0 = v_1 - i_2 R_2 = 0 - (v_I / R_1) R_2$	[2]
$v_0 = -\left(R_2 / R_1\right) v_I$	[0.5]

(b)	
$R_1 = -(R_2 V_l) / v_0$	[2]
$= -(150 \text{ k x } (-0.5)) / (2.5 \text{ V}) = 30 \text{ k}\Omega$	[2]

Name:		Dr JBO
Student ID N	lumber:	Model Answer
Section:		
Lecturer:	Dr. Ja	maludin Bin Omar

EEEB273 - Quiz 4 SEMESTER 1, ACADEMIC YEAR 2013/2014 Date: 2 September 2013 Time: 15 minutes

Question:

Refer to Figure 1.

- (g) **Derive** the relationship (formula) between v_I and v_O in terms of R_1 and R_2 . [6 marks]
- (h) Calculate R_2 when $R_1 = 50 \text{ k}\Omega$, $v_1 = -0.6 \text{ V}$ and $v_0 = 3.8 \text{ V}$. [4 marks]

Show clearly all calculations in order to get full marks.

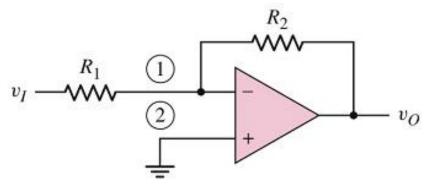


Figure 1

(a)	
$v_1 \cong v_2 = 0$	[1]
$i_1 = (v_I - v_1) / R_1 = v_I / R_1$	[2]
$i_1 = i_2$	[0.5]
$v_0 = v_1 - i_2 R_2 = 0 - (v_I / R_1) R_2$	[2]
$v_O = -\left(R_2 / R_1\right) v_I$	[0.5]

(b)	
$R_2 = -\left(R_1 v_0\right) / v_I$	[2]
$= -(50 \text{k x } 3.8 \text{V})/(-0.6 \text{V}) = 316.67 \text{ k}\Omega$	[2]