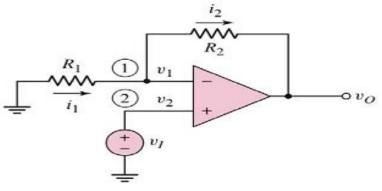
Name:Dr JBOStudent ID Number:Model AnswerSection:Image: Section Section


EEEB273 - Quiz 4 SEMESTER 1, ACADEMIC YEAR 2013/2014 Date: 2 September 2013 Time: 15 minutes

Question:

Refer to Figure 1.

- (a) **Derive** the relationship (formula) between v_I and v_O in terms of R_1 and R_2 . [6 marks]
- (b) Calculate v_0 when $R_1 = 50 \text{ k}\Omega$, $R_2 = 200 \text{ k}\Omega$ and $v_l = 0.5 \text{ V}$. [4 marks]

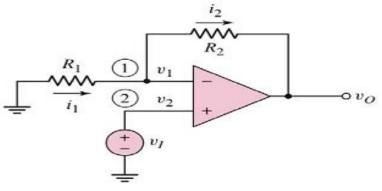
Show clearly all calculations in order to get full marks.

Answer:

(a)	
$v_1 \cong v_2 = v_I$	[1]
$i_1 = (0 - v_1) / R_1 = -v_I / R_1$	[2]
$i_1 = i_2$	[0.5]
$v_0 = v_1 - i_2 R_2 = v_I - (-v_I / R_1) R_2$	[2]
$v_0 = (1 + R_2 / R_1) v_I$	[0.5]

(b)	
$v_O = (1 + R_2 / R_1) v_I$	[2]
= (1 + 200 k / 50 k)(0.5 V) = 2.5 V	[2]

Name:Dr JBOStudent ID Number:Model AnswerSection:Lecturer:Dr. Jamaludin Bin Omar


EEEB273 - Quiz 4 SEMESTER 1, ACADEMIC YEAR 2013/2014 Date: 2 September 2013 Time: 15 minutes

Question:

Refer to Figure 1.

- (c) **Derive** the relationship (formula) between v_I and v_O in terms of R_1 and R_2 . [6 marks]
- (d) Calculate v_I when $R_1 = 50 \text{ k}\Omega$, $R_2 = 180 \text{ k}\Omega$ and $v_0 = 2.5 \text{ V}$. [4 marks]

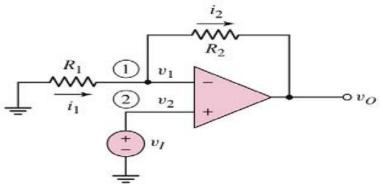
Show clearly all calculations in order to get full marks.

Answer:

(a)	
$v_1 \cong v_2 = v_I$	[1]
$i_1 = (0 - v_1) / R_1 = -v_I / R_1$	[2]
$i_1 = i_2$	[0.5]
$v_0 = v_1 - i_2 R_2 = v_I - (-v_I / R_1) R_2$	[2]
$v_O = (1 + R_2 / R_1) v_I$	[0.5]

(b) $v_I = v_O / (1 + R_2 / R_1)$ [2] = 2.5 V / (1 + 180 k / 50 k) = 0.54347 V [2]

Name:Dr JBOStudent ID Number:Model AnswerSection:Lecturer:Dr. Jamaludin Bin Omar


EEEB273 - Quiz 4 SEMESTER 1, ACADEMIC YEAR 2013/2014 Date: 2 September 2013 Time: 15 minutes

Question:

Refer to Figure 1.

- (e) **Derive** the relationship (formula) between v_I and v_O in terms of R_1 and R_2 . [6 marks]
- (f) Calculate R_1 when $R_2 = 150 \text{ k}\Omega$, $v_1 = +0.5 \text{ V}$ and $v_0 = 2.5 \text{ V}$. [4 marks]

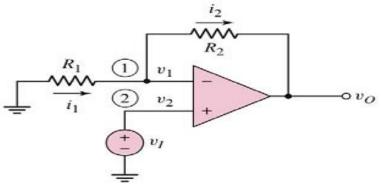
Show clearly all calculations in order to get full marks.

Answer:

(a)	
$v_1 \cong v_2 = v_I$	[1]
$i_1 = (0 - v_1) / R_1 = -v_I / R_1$	[2]
$i_1 = i_2$	[0.5]
$v_0 = v_1 - i_2 R_2 = v_I - (-v_I / R_1) R_2$	[2]
$v_0 = (1 + R_2 / R_1) v_I$	[0.5]

(b)	
$R_1 = R_2 / (v_0 / v_I - 1)$	[2]
$= 150 \text{k} / (2.5/0.5 - 1) = 37.5 \text{ k}\Omega$	[2]

Name:Dr JBOStudent ID Number:Model AnswerSection:Image: Section Section


EEEB273 - Quiz 4 SEMESTER 1, ACADEMIC YEAR 2013/2014 Date: 2 September 2013 Time: 15 minutes

Question:

Refer to Figure 1.

- (g) **Derive** the relationship (formula) between v_I and v_O in terms of R_1 and R_2 . [6 marks]
- (h) Calculate R_2 when $R_1 = 50 \text{ k}\Omega$, $v_1 = +0.6 \text{ V}$ and $v_0 = 3.8 \text{ V}$. [4 marks]

Show clearly all calculations in order to get full marks.

Answer:

(a)	
$v_1 \cong v_2 = v_I$	[1]
$i_1 = (0 - v_1) / R_1 = -v_I / R_1$	[2]
$i_1 = i_2$	[0.5]
$v_0 = v_1 - i_2 R_2 = v_I - (-v_I / R_1) R_2$	[2]
$v_0 = (1 + R_2 / R_1) v_I$	[0.5]

(b)	
$R_2 = R_1 (v_0 / v_I - 1)$	[2]
$= 50 \mathrm{k} (3.8/0.6 - 1) = 266.667 \mathrm{k}\Omega$	[2]