Name:

Student ID Number:

Section: 01/02/03/04 A/B

Lecturer: Dr Jamaludin /Dr Azni Wati

/Dr Fazrena

College of Engineering Department of Electronics and Communication Engineering

Test 1 – Model Answer

SEMESTER 1, ACADEMIC YEAR 2013/2014

Subject Code	•	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	•	27 June 2013
Time Allowed	:	1 hour

Instructions to the candidates:

- 1. Write your Name and Student ID number. Circle your section number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER. Use both sides of the question paper to write your answers.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

FORMULA FOR TRANSISTORS

<u>BJT</u>

MOSFET

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$

$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$

$$i_{C} = \alpha i_{E} = \beta i_{B}$$

$$i_{E} = i_{B} + i_{C}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_\pi$$

$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

; N – MOSFET

$$v_{DS}$$
 (sat) = $v_{GS} - V_{TN}$
 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$
; P – MOSFET
 v_{SD} (sat) = $v_{SG} + V_{TP}$
 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal $g_m = 2\sqrt{K_2 I_{DQ}}$ $r_o \cong \frac{1}{\lambda I_{DQ}}$

Question 1 [60 marks]

(a) Consider a modified three-transistor BJT current source as in Figure 1(a). Transistor parameters are $V_{BE}(on) = 0.7$ V, $V_A = \infty$, and $\beta = 80$. Hint: Please take note of the current directions given in the Figure 1(a).

(i) **Show** that

$$I_{REF} - \frac{V_{BE}}{(1+\beta)R_2} = I_O\left(1 + \frac{2}{\beta(1+\beta)}\right)$$
[20 marks]

(ii) For $R_2 = 10 \text{ k}\Omega$, $V^+ = 10 \text{ V}$, and $I_0 = 0.70 \text{ mA}$, find I_{REF} and R_1 .

[20 marks]

Answers for Question 1(a)

(i)

$$I_{B1} = I_{B2}$$

 $I_{O} = \beta I_{B2} \Rightarrow I_{B2} = I_{O} / \beta$
 $I_{C1} = \beta I_{B2} \Rightarrow I_{C1} = I_{O}$
(2)
 $I_{E3} = 2 I_{B2} + V_{BE} / R_{2}$
 $I_{B3} = I_{E3} / (1 + \beta) + (V_{BE}) / (1 + \beta)(R_{2})$
 $= (2 I_{O}) / (\beta (1 + \beta)) + (V_{BE}) / ((1 + \beta)R_{2})$
(2)
 $I_{REF} = I_{C1} + I_{B3}$
 $= I_{O} + (2 I_{O}) / (\beta (1 + \beta)) + (V_{BE}) / ((1 + \beta)R_{2})$
(2)
 $I_{REF} - (V_{BE}) / ((1 + \beta)R_{2}) = I_{O} + (2 I_{O}) / (\beta (1 + \beta))$
(2)
 $I_{REF} - \frac{V_{BE}}{(1 + \beta)R_{2}} = I_{O} \left(1 + \frac{2}{\beta(1 + \beta)}\right)$
(2)
Figure 1(a)

$$I_{REF} - \frac{V_{BE}}{(1+\beta)R_2} = I_O\left(1 + \frac{2}{\beta(1+\beta)}\right)$$

rigure I(a)

(ii) $= I_0 (1 + 2/(\beta(1 + \beta))) + (V_{BE})/((1 + \beta)R_2)$ [4] I_{REF} = (0.70m)(1+2/(80x81)) + (0.7)/(81x10k) [4] = 0.700216m + 0.000864m= 0.7011 mA [2]

$$R_{I} = (V^{+} - 2V_{BE}(\text{on}) - 0) / I_{REF}$$
[4]
= (10 - 2(0.7)) / (0.7011m)
= 12.27 kΩ [2]

(b) For a MOSFET current source circuit in Figure 1(b) the transistor parameters are $V_{TN} = 0.5$ V, $k'_n = 80 \ \mu A/V^2$, and $\lambda = 0$. Design the circuit such that $V_{DS2}(sat) = 0.3$ V, $I_{REF} = 50 \ \mu A$, and the load current is $I_0 = 100 \ \mu A$.

Answers for Question 1(b)

$$V_{DS2}(\text{sat}) = V_{GS} - V_{TN}$$
 [2]

$$V_{GS} = V_{DS2}(\text{sat}) + V_{TN}$$

= 0.3 + 0.5 = 0.8 V [2]

$$I_{REF} = (V^+ - V_{GS} - 0) / R_1$$
 [2]

$$R_1 = (V^+ - V_{GS} - 0) / I_{REF} = (2 - 0.8) / (50\mu) = 24 \text{ k}\Omega$$
[2]

$$I_{REF} = (k'_n / 2) (W/L)_1 [V_{GS} - V_{TN}]^2$$
 [2]

$$(W/L)_1 = I_{REF} / \{ (k'_n / 2) [V_{GS} - V_{TN}]^2 \}$$

$$= (50\mu) / \{ (80\mu/2) [0.8 - 0.5]^2 \}$$

$$= 13.889$$
[2]

$$I_0 = (k'_n / 2) (W/L)_2 [V_{GS} - V_{TN}]^2$$
 [2]

$$(W/L)_2 = I_O / \{ (k'_n / 2) [V_{GS} - V_{TN}]^2 \}$$

$$= (100\mu) / \{ (80\mu/2) [0.8 - 0.5]^2 \}$$

$$= 27.778$$

$$[2]$$

Figure 1(b)

[20 marks]

Answers:

Question 2

(i)

<u>Question 2</u> [40 marks]

The basic BJT differential pair is shown in Figure 2. The circuit parameter values are: $V^+ = +10$ V, V = -10 V, $I_Q = 1$ mA, and $R_C = 10$ k Ω . The transistor parameters in the differential pair are $\beta = \infty$ (neglect base currents), $V_A = \infty$, and V_{BE} (on) = 0.7 V. The constant current source in Figure 2 that is providing the current I_Q is implemented using the <u>cascode current source</u>.

- (i) **Sketch the whole differential pair circuit** to include the circuit for the constant current source circuit. [15 marks]
- (ii) For all transistors in cascode current source, $V_A = 120$ V and $\beta = 100$. What is the value of the **output resistance** (R_0) looking into the constant current source?

[5 marks]

- (iii) **Determine** i_{C1} and v_{CE1} for common-mode voltages $v_{B1} = v_{B2} = v_{CM} = -5$ V. [10 marks]
- (iv) It is given that the input voltages for the differential amplifier are $v_{B1} = 210 \times 10^{-6} \sin \omega t V$ and $v_{B2} = 190 \times 10^{-6} \sin \omega t V$. Calculate differential-mode input voltage (v_d) and commonmode input voltage (v_{cm}) of the differential amplifier.

[10 marks]

Answers for Question 2

(ii) $\beta = 100, I_Q = 1 \text{ mA}$ For cascode current source R_0 $= (\beta r_{06})$ [2] $= V_A / I_O$ [1] r₀₆ $= (120)/(1m) = 120 \text{ k}\Omega$ [1] v_E R_0 $= (\beta r_{06}) = 100 \text{ x} 120 \text{ k}$ v_{BE1} $= 12 M\Omega$ BE2[1] i_{E1} i_{E2} v_{B2} v_{B1} (iii) $\beta = \infty$ $i_{C1} = i_{E1} = I_Q / 2 = 0.5 \text{ mA}$ [3] $= V^{+} - i_{C1} R_{C}$ = 10 - (0.5m)(10k) = 5 V *v*_{C1} [1] [1] **Figure 2** For $v_{CM} = -5$ V $= v_{CM} - V_{BE}$ (on) v_E v_E 1 = -5 - 0.7= -5.7 V[1] V_{CE1} $= v_{C1} - v_E$ [2] = 5 - (-5.7)= 10.7 V [1]

Answers:

 $v_d = v_{BI} - v_{B2}$ [2] = 210x10⁻⁶ sin $\omega t - 190x10^{-6}$ sin ωt [2] = 20x10⁻⁶ sin ωt [1] $v_{cm} = (v_{BI} + v_{B2}) / 2$ [2]

$$= (210 \times 10^{-6} \sin \omega t + 190 \times 10^{-6} \sin \omega t)/2$$
[2]
= 200 \text{10}^{-6} \text{sin } \omega t = (1)^{-6} \text{sin } \text{sin