

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 2 2013 / 2014

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: January 2014
TIME	: 3 hours

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **Six** (6) questions in **Nine** (9) pages.
- 2. Answer ALL questions.
- 3. Write all answers in the answer booklet provided. Use pen to write your answer.
- 4. Write answer to different question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.

THIS QUESTION PAPER CONSISTS OF NINE (9) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [20 marks]

You are required to design a differential amplifier with passive load using **NPN bipolar junction transistors (BJT)** with the following specifications. You <u>**DO NOT**</u> need to design the biasing circuit for the differential amplifier.

<u>Two-transistor NPN BJT current source</u> is biasing a **1.2 mA** constant current. The circuit parameters are power supplies of +10 V and -10 V. The voltages measured at v_{C1} and v_{C2} of the differential amplifier are **4 Volts**.

The transistors parameters are matched NPN BJTs with $\beta = 50$, $V_{BE}(on) = 0.7$ V, and $V_A = \infty$, and various resistors with precise values are made available.

Design the differential amplifier described above with its biasing circuit. **Draw and label** the circuit diagram of your design clearly. **Show all calculations** and values as accurate as possible with regard to the design. Based on your assumption for the design, **calculate** the values for v_d , v_{cm} , and V_E (i.e. voltage at a point where emitters for both transistors in the differential amplifier are connected).

[20 marks]

Question 2 [15 marks]

Figure 2 shows a basic differential amplifier. A two-transistor current source is used to bias a constant current source of 0.25 mA (Note: $I_Q = 0.25$ mA). The differential amplifier is using a pair of PNP transistors as its active load. The output voltage, v_0 , of the differential amplifier is taken as v_{C2} .

The transistors parameters are: $\beta = 150$, $V_{BE}(\text{on}) = V_{EB}(\text{on}) = 0.7 \text{ V}$, $V_{AN} = 120 \text{ V}$, and $V_{AP} = 100 \text{ V}$.

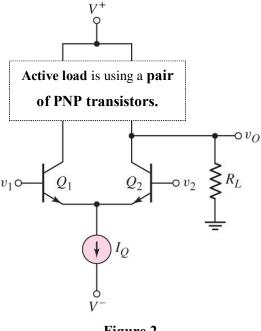


Figure 2

(a) **Draw** a complete differential amplifier circuit including the pair of PNP transistors as active load and the two-transistor current source as biasing circuit.

[5 marks]

(b) **Determine** the differential-mode voltage gain of the circuit, $A_d = v_0/v_d$.

[6 marks]

(c) **Calculate** the differential-mode voltage gain if the load resistance, R_L , is 100 k Ω . [4 marks]

Question 3 [10 marks]

- (a) **Describe** the operation of **a class-B** output stage by means of crossover distortion. [3 marks]
- (b) A class-AB output stage with BJTs is shown in Figure 3. Reverse saturation current for each transistor is $I_S = 2 \times 10^{-15}$ A.
 - (i) Find V_{BB} when $v_I = 0$, as such producing $i_{Cn} = i_{Cp} = 1$ mA. [2 marks]
 - (ii) Calculate i_{Cn} , i_{Cp} , and v_I to obtain $v_0 = -3.5$ V. [3 marks]
 - (iii) Calculate the power dissipated in R_L .

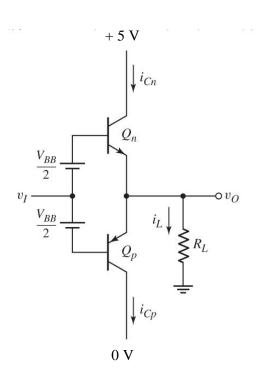


Figure 3

[2 marks]

Question 4 [20 marks]

A MOSFET op-amp circuit as shown in Figure 4 is biased with $I_Q = 200 \ \mu$ A. The transistor parameters are $k'_n = 100 \ \mu$ A/V², $k'_p = 40 \ \mu$ A/V², $V_{TN} = 0.4 \ V$, $V_{TP} = -0.4 \ V$, and $\lambda_n = \lambda_p = 0$. The transistor aspect ratios are $(W/L)_1 = (W/L)_2 = 20$, $(W/L)_3 = 50$, and $(W/L)_4 = 40$.

(i) **Design** the circuit such that $I_{D3} = 150 \ \mu\text{A}$, $I_{D4} = 200 \ \mu\text{A}$, and $v_o = 0$ for $v_1 = v_2 = 0$ V.

[9 marks]

(ii) Find the differential voltage gain (A_d) of the differential amplifier in the circuit.

[4 marks]

(iii) Determine the voltage gain for the gain stage (A_2) , made up by transistor M_3 , in the circuit. A_2 can be calculated using $A_2 = -g_{m3} R_{D2}$.

[3 marks]

(iv) **Calculate** the overall small-signal voltage gain (A_v) of the multi-stage amplifier circuit. You may assume value for the voltage gain of the output stage (A_3) made up by transistor $M_{4.}$ [4 marks]

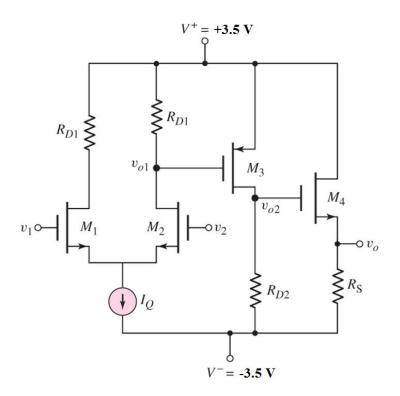


Figure 4

Question 5 [15 marks]

Consider a standard 741 operational amplifier (op-amp) circuit as shown in Figure 5a. Study Figure 5a carefully and <u>observe the values for resistors</u> in the circuit. Load resistance connected to the <u>Output of the 741 op-amp</u> is $R_L = 2 \text{ k}\Omega$. The op-amp is supplied by ±15 V DC voltages.

The transistors have $\beta_n = 200$, $\beta_p = 50$, $V_{AN} = V_{AP} = 50$ V, $V_{BE}(on) = V_{EB}(on) = 0.6$ V, and the reverse saturation current $I_S = 5 \times 10^{-16}$ A.

From DC analysis, bias currents for selected transistors are $I_{C13A} = 0.18$ mA, $I_{C13B} = 0.54$ mA, $I_{C16} = 15.8 \mu$ A, $I_{C17} = 0.54$ mA, $I_{C20} = 0.138$ mA, and $I_{C22} = 0.18$ mA.

Figure 5b shows the AC equivalent circuit for the gain stage of the 741 op-amp. Figure 5c shows the AC equivalent circuit for the output stage of the 741 op-amp, which is used to determine R_{i3} in the Figure 5b.

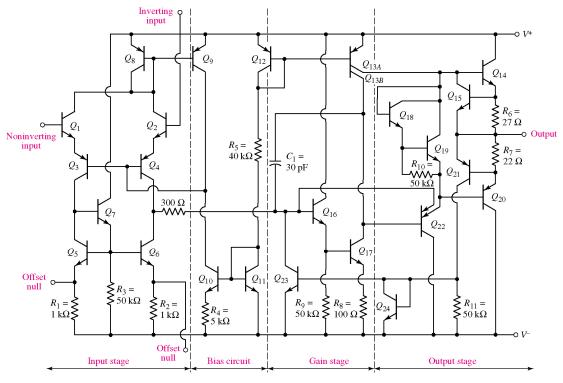
With analysis, the voltage gain for the gain stage $(A_{\nu 2})$ of the 741 op-amp can be calculated using the following formula:

$$A_{v2} = \frac{v_{o2}}{v_{o1}} = \frac{-\beta_n (1 + \beta_n) R_9 (R_{act2} || R_{i3} || R_{o17})}{R_{i2} \{ R_9 + [r_{\pi 17} + (1 + \beta_n) R_8] \}}$$

Where: $R_{act2} = r_{o13B}$

$$R_{i3} = r_{\pi 22} + (1 + \beta_p) [R_{19} || R_{20}]$$
$$R_{19} \cong R_{13A} = r_{o13A}$$
$$R_{20} = r_{\pi 20} + (1 + \beta_p) R_L$$

Calculate the voltage gain for the gain stage $(A_{\nu 2})$ of the 741 op-amp. Neglect base current in your calculations.


[15 marks]

 $\circ V_o$

 $\sum_{k=1}^{\infty} R_{L}$

 ${} \leq R_7$

 Q_{20}

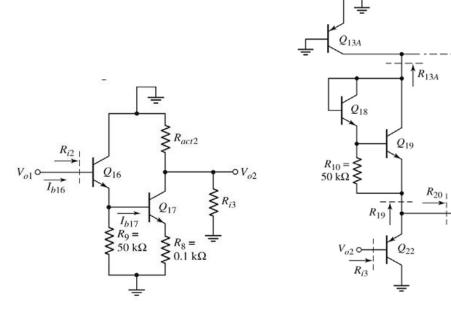


Figure 5b

Question 6 [20 marks]

(a) EXCEPT for standard inverting and non-inverting amplifier circuits using op-amp, state <u>three (3) other applications using the op-amp</u> and sketch those three (3) other op-amp based circuits. You are required to sketch the circuit to include all external components connected to the op-amp, in order for the overall circuit to function its intended application.

[6 marks]

- (b) With a <u>feedback resistor of 200 kΩ</u>, design an amplifier <u>using op-amp</u> with a closed-loop gain which can be varied between -10 to -25 using a potentiometer. Draw clearly your circuit design. [6 marks]
- (c) For the instrumentation amplifier shown in Figure 6, the circuit parameters are $R_1 = 20 \text{ k}\Omega$, $R_2 = 115 \text{ k}\Omega$, $R_3 = 50 \text{ k}\Omega$, and $R_4 = 200 \text{ k}\Omega$. For input signals of $v_{I1} = 0.60 0.30 \sin \omega t$ (V) and $v_{I2} = 0.60 + 0.30 \sin \omega t$ (V), determine v_{01} , v_{02} , and v_0 .

[8 marks]

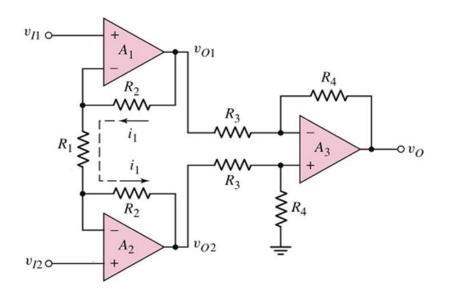


Figure 6

-END OF QUESTION PAPER-

APPENDIX

BASIC FORMULA

<u>BJT</u>

$$i_C = I_S e^{v_{BE}/V_T}$$
; NPN
 $i_C = I_S e^{v_{EB}/V_T}$; PNP

$$i_{C} = \beta i_{B} = \alpha i_{E}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal $\beta = g_m r_\pi$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $g_m = \frac{I_{CQ}}{V_T}$

$$r_o = \frac{V_A}{I_{CQ}}$$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_{\gamma}I_{DQ}}$$
$$r_o \cong \frac{1}{\lambda I_{DQ}}$$