Name:

Student ID Number:

Section: 01/02/03 A/B

Lecturer: Dr Jamaludin /Mdm Jehana

College of Engineering

Department of Electronics and Communication Engineering

Test 1 - MODEL ANSWERS

SEMESTER 2, ACADEMIC YEAR 2013/2014

Subject Code	:	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	:	14 November 2013
Time Allowed	:	1 hour 15 minutes

Instructions to the candidates:

- 1. Write your Name and Student ID number. Circle your section number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.
- 5. For BJT, use $V_T = 26$ mV where appropriate.
- 6. Use at least 4 significant numbers in all calculations.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question No.	1	2	Total
Marks			

FORMULA FOR TRANSISTORS

BJT

$$i_{C} = I_{S} e^{v_{BE} / V_{T}}; \text{NPN}$$
$$i_{C} = I_{S} e^{v_{EB} / V_{T}}; \text{PNP}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$

 $r_{\pi} = \frac{\beta V_T}{I_{CQ}}$

 $g_m = \frac{I_{CQ}}{V_T}$

 $r_o = \frac{V_A}{I_{CO}}$

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

MOSFET

; P – MOSFET $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$ $i_D = K_p [v_{SG} + V_{TP}]^2$ $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

; Small signal

$$g_m = 2\sqrt{K_{?}I_{DQ}}$$

 $r_o \cong \frac{1}{\lambda I_{DO}}$

<u>Question 1</u> [65 marks]

You are assigned to analyze the following <u>BJT current sources</u>: Three-transistor current source, Wilson current source, and Cascode current source. All NPN transistors in the given current sources are matched. The transistor parameters are: $\beta = 50$, $V_{BE}(on) = 0.6$ V, and $V_A = 150$ V. The circuit parameters for the current sources are: $V^+ = 12$ V, $V^- = -12$ V, and $R_1 = 30$ k Ω .

- (a) Calculate reference current (I_{REF}) , output current (I_0) , and output resistance (R_0) for every BJT current source given above. Show clearly all calculations and do not forget to put proper Units for I_{REF} , I_0 , and R_0 . [45 marks]
- (b) Based on the value of R_0 , which current source has the most stable I_0 ? Give a reason for your answer. [5 marks]
- (c) What is the percent change in I_0 as the output voltage of a particular current source changes by +3 V? [15 marks]

Answers for Question 1

Q1(a)

Three-transistor current source	Wilson current source	Cascode current source
$I_{REF} = (V^+ - 2 V_{BE} - V^-)/R_1$ = (12 - 2x0.6 - (-12))/(30k) = 0.76 mA	$I_{REF} = (V^+ - 2 V_{BE} - V^-)/R_1$ = (12 - 2x0.6 - (-12))/(30k) = 0.76 mA	$I_{REF} = (V^+ - 2 V_{BE} - V^-)/R_1$ = (12 - 2x0.6 - (-12))/(30k) = 0.76 mA
[2, 2, 1]	[2, 2, 1]	[2, 2, 1]
$I_O = I_{REF} / (1 + 2/(\beta(1+\beta)))$ = (0.76m)/(1+2/(50x51)) = 0.7594 mA	$I_{O} = I_{REF} / (1 + 2/(\beta(2+\beta)))$ = (0.76m)/(1+2/(50x52)) = 0.7594 mA	$I_O = I_{REF} / (1 + 4/\beta)$ = (0.76m)/(1+4/50) = 0.7037 mA
[2, 2, 1]	[2, 2, 1]	[2, 2, 1]
$r_{02} = V_A / I_0$ = 150/(0.7594m) = 197.524 k Ω	$r_{03} = V_A / I_0$ = 150/(0.7594m) = 197.524 k Ω	$r_{O4} = V_A / I_O$ = 150/(0.7037m) = 213.159 k Ω
$R_0 = r_{02}$ = 197.524 kΩ	$R_{O} = (\beta r_{O3})/2$ = (50 x 197.524k)/2 = 4.9381 MΩ	$R_0 = \beta r_{04}$ = 50x206.89k = 10.6579 MΩ
[1, 1, 1, 1, 1]	[1, 1, 1, 1, 1]	[1, 1, 1, 1, 1]

[5 marks each box, Total 45 marks]

Answers for Question 1 (Cont.)

Q1(b)

Cascode current source. [3]

Because with highest value for Ro makes change in Io to be smallest and Io most stable. [2]

Q1(c)

Three-transistor current source	Wilson current source	Cascode current source
$R_0 = \Delta V_0 / \Delta I_0$	$R_0 = \Delta V_0 / \Delta I_0$	$R_0 = \Delta V_0 / \Delta I_0$
$\Delta I_O = \Delta V_O / R_O$	$\Delta I_O = \Delta V_O / R_O$	$\Delta I_0 = \Delta V_0 / R_0$
= (3)/(197.524k)	$= (3)/(4.9381 \mathrm{M})$	= (3)/(10.6579M)
= 15.188 uA	= 0.6075 uA	= 0.2814 uA
$\% \Delta I_0 = (\Delta I_0 / I_0) \times 100\%$ = (15.188u/0.7594m) \times 100% = 2 \%	$\% \Delta I_O = (\Delta I_O / I_O) \times 100\%$ = (0.6075u/0.7594m) \times 100% = 0.0799 %	$\% \Delta I_O = (\Delta I_O / I_O) \times 100\%$ = (0.2814u/0.7037m) \times 100% = 0.0399 \%
[1, 1, 1, 1, 1]	[1, 1, 1, 1, 1]	[1, 1, 1, 1, 1]

Question 2 [35 marks]

For a **MOSFET current source** circuit shown in **Figure 1**, transistor parameters are $V_{TN} = 0.7$ V, $k'_n = 70 \ \mu A/V^2$, and $\lambda = 0.015 \ V^{-1}$. The transistor aspect ratios are $(W/L)_1 = 20$, $(W/L)_2 = 12.5$, and $(W/L)_3 = 3.$

+5 V

[2]

[2]

- Determine V_{GS1} , V_{GS3} , I_{REF} , I_0 , and V_{DS2} (a)
- (b) Find I_0 at $V_{DS2} = 2.5$ V

Answers for Question 2

(a)

$$I_{REF} = I_{D1} = \frac{k_n}{2} \left(\frac{W}{L} \right)_1 \left(V_{GS1} - V_{TN} \right)^2$$
[2]

$$I_{REF} = \frac{70\mu}{2} (20) \left(V_{GS1} - 0.7 \right)^2$$
[1]

$$I_{REF} = I_{D3} = \frac{k_n}{2} \left(\frac{W}{L} \right)_3 \left(V_{GS3} - V_{TN} \right)^2$$
[2]

$$I_{REF} = \frac{70\mu}{2} (3) \left(V_{GS3} - 0.7 \right)^2$$
[1]

$$V_{GS1} + V_{GS3} = V^+ - V^- = 5 - (-5) = 10 \text{ V}$$
[2]

$$V_{GS3} = 10 - V_{GS1}$$
[1]

$$20 \left(V_{GS1} - 0.7 \right)^2 = 3 \left(10 - V_{GS1} - 0.7 \right)^2$$
[1]
Solve the equation clearly to find

$$V_{GS3} = 10 - V_{GS1} = 10 - 3.1 = 6.9 \text{ V}$$
[1]

$$I_{REF} = I_{D1} = \frac{70\mu}{2} (20) \left(3.1 - 0.7 \right)^2 = 4.032 \text{ mA}$$
[3]

$$V_{GS2} = V_{GS1} = 3.1 \text{ V}$$
[2]

$$I_{o} = I_{D2} = \frac{k_{n}}{2} \left(\frac{W}{L}\right)_{2} \left(V_{GS2} - V_{TN}\right)^{2}$$
[2]

$$I_o = \frac{70\mu}{2} (12.5) \left(3.1 - 0.7 \right)^2 = 2.520 \text{ mA}$$
[3]
$$V_{DS2} = V_{DS1} = V_{GS1} = 3.1 \text{ V}$$
[2]

$$\begin{bmatrix} 2 \\ \\ 1 \end{bmatrix} \xrightarrow{-} V_{GS3} \xrightarrow{+} M_2 V_{DS2} \xrightarrow{-} \begin{bmatrix} 1 \\ \\ 1 \end{bmatrix} \xrightarrow{-} V_{GS1} \xrightarrow{-} V_{GS2} \xrightarrow{-} \begin{bmatrix} 1 \\ \\ 1 \end{bmatrix} \xrightarrow{-} V_{GS1} \xrightarrow{-} V$$

Figure 1

[25 marks]

[10 marks]

Answers for Question 2 (Cont.)

From part (a)

$$I_0 = 2.520 \text{ mA} \text{ at } V_{DS2} = 3.1 \text{ V}$$
 [1]
 $R_0 = 1/(\lambda I_0) = 1/(0.015 \text{ x } 2.520 \text{ m}) = 26.455 \text{ k}\Omega$ [2, 1, 1]
At $V_{DS2} = 2.5 \text{ V}$,
 $\Delta I_0 = V_{DS2}/R_0 = (2.5 - 3.1)/R_0 = -0.0226 \text{ mA}$ [1, 1, 1]

→
$$I_0 = 2.520 \text{m} + (-0.0226 \text{m}) = 2.4974 \text{ mA}$$
 [2]