Name:

Student ID Number:

Section: 01 A/B



## **College of Engineering**

Department of Electronics and Communication Engineering

## Test 1

#### **SEMESTER 3, ACADEMIC YEAR 2013/2014**

| Subject Code | • | <b>EEEB273</b>                              |
|--------------|---|---------------------------------------------|
| Course Title | : | <b>Electronics Analysis &amp; Design II</b> |
| Date         | • | 13 March 2014                               |
| Time Allowed | • | 2 hours                                     |

#### **Instructions to the candidates:**

- 1. Write your Name and Student ID number. Circle your section number.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.
- 5. For BJT, use  $V_T = 26$  mV where appropriate.
- 6. Use at least 4 significant numbers in all calculations.

#### NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.



| Question No. | 1 | 2 | 3 | 3 | Total |
|--------------|---|---|---|---|-------|
| Marks        |   |   |   |   |       |
|              |   |   |   |   |       |

[20 marks]

[15 marks]

#### **<u>Question 1</u>** [35 marks]

Figure 1 shows a two-transistor MOS current mirror. The transistor parameters are assumed to be  $V_{TP} = -0.4 \text{ V}$ ,  $k'_p = 60 \ \mu\text{A/V}^2$ , and  $\lambda = 0$ . The transistor width-to-length ratios are  $(W/L)_1 = 25$ ,  $(W/L)_2 = 15$ , and  $(W/L)_3 = 5$ .

- (a) Calculate  $I_{O}$ ,  $I_{REF}$ ,  $V_{SG1}$ , and  $V_{SG3}$ .
- (b) Design the circuit such that  $I_0 = 80 \ \mu A$ ,  $I_{REF} = 220 \ \mu A$ , and  $V_{SD2}(sat) = 0.35 \ V$ .



Figure 1

#### Answers to Q1

(a) Calculate  $I_{0}$ ,  $I_{REF}$ ,  $V_{SGI}$ , and  $V_{SG3}$ .  $I_{REF} = \left(\frac{\kappa_{F}^{l}}{2}\right) \left(\frac{W}{L}\right)_{1} (V_{SG1} + V_{TP})^{2} = \left(\frac{\kappa_{F}^{l}}{2}\right) \left(\frac{W}{L}\right)_{3} (V_{SG3} + V_{TP})^{2} i$  (1) [5]  $V_{SG3} = 3 - V_{SG1} i$  (2) [2]  $\sqrt{25}(V_{SG1} - 0.4) = \sqrt{5}(3 - V_{SG1} - 0.4)$  [5]  $3.26V_{SG1} = 3.4944 \rightarrow V_{SG1} = 1.08 V$  and  $V_{SG3} = 1.92 V$  [4] Substituting the values,  $I_{REF} = \left(\frac{60}{2}\right) (25)(1.08 - 0.4)^{2} = 0.347 mA$  [2]  $I_{0} = \left(\frac{60}{2}\right) (15)(1.08 - 0.4)^{2} = 0.208 mA$  [2]

(b) Design the circuit such that 
$$I_0 = 80 \ \mu A$$
,  $I_{REF} = 220 \ \mu A$ , and  
 $V_{SD2}(sat) = 0.35 \ V.$  [15 marks]  
 $V_{SD2}(sat) = 0.35 = V_{SG2} + V_{TP} - 0.4 \rightarrow V_{SG2} = 0.75 \ V$  [3]  
 $I_{REF} = 220 \ \mu = \left(\frac{60}{2}\right) \left(\frac{W}{L}\right)_1 (0.75 - 0.4)^2 \rightarrow \left(\frac{W}{L}\right)_1 = 59.9$  [3]  
 $I_0 = 80 \ \mu = \left(\frac{60}{2}\right) \left(\frac{W}{L}\right)_2 (0.75 - 0.4)^2 \rightarrow \left(\frac{W}{L}\right)_2 = 21.8$  [3]  
 $V_{SG3} = 3 - 0.75 = 2.25 \ V$  [3]  
 $220 = \left(\frac{60}{2}\right) \left(\frac{W}{L}\right)_3 (2.25 - 0.4)^2 \rightarrow \left(\frac{W}{L}\right)_{32} = 2.14$  [3]

#### **Question 2** [25 marks]

Figure 2 shows a differential amplifier has a pair of pnp bipolar as input devices and a pair of npn bipolar connected as an active load. The circuit has  $I_Q = 0.2$  mA bias current and the transistor parameters are  $\beta = 100$  and  $V_A = 100$  V.

- (a) Calculate  $I_0$  such that the dc currents in the diff-amp are balanced. [6 marks]
- (b) Determine the open-circuit differential-mode voltage gain,  $A_d$ . [12 marks]
- (c) Find the differential-mode voltage gain if a load resistance  $R_L = 250 \text{ k}\Omega$ is connected to the output. [7 marks]



Figure 2

- (a) Calculate  $I_0$  such that the dc currents in the diff-amp are balanced. [6 marks]  $I_0 = I_{BS} + I_{BE}$  [3]  $I_0 \approx \frac{I_0}{\beta} = \frac{0.2m}{100} = 2 \ \mu A$  [3]
- (b) Determine the open-circuit differential-mode voltage gain,  $A_d$ . [12 marks]

$$r_{02} = r_{04} = \frac{V_A}{I_{CQ}} = \frac{100}{0.1m} = 1000k\Omega [4]$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{0.1m}{0.026} = 3.846 \, mA/V [4]$$

$$\therefore A_d = g_m (r_{02} || r_{04}) = (3.846m)(1000k || 1000k) = 1923 [4]$$

- (c) Find the differential-mode voltage gain if a load resistance  $R_L = 250 \text{ k}\Omega$ is connected to the output. [7 marks]  $A_d = g_m(r_{02} ||r_{04}||R_L)$  [3]
  - $A_d = (3.846m)(1000k||1000k||250k) = 641[4]$

#### Question 3 [20 marks]

The circuit parameters for the **emitter follower** circuit in Figure 3 is  $V^+ = 5$  V, V = -5 V, and  $R_L = 1$  k $\Omega$ . The transistor parameters are  $V_{BE}(\text{on}) = 0.6$  V,  $V_{CE}(\text{sat}) = 0.3$  V, and  $V_A = \infty$ . Neglect base currents. The **output voltage** is varying from -4.5 V to +4.5 V.



Figure 3

- (a) Find the required  $I_Q$  and the value of R. [6 marks]
- (b) For  $v_0 = 0$  V, find the power dissipated in the transistor  $Q_1$ , and the power dissipated in the current source  $(Q_2, Q_3, \text{ and } R)$ . [9 marks]
- (c) Determine the conversion efficiency for a symmetric sine-wave output voltage with peak value of 8 V. [5 marks]

Test 1

| i)                                                                                                                             | Find t            | he minimum required $I_Q$ and the value of R.                                                    | [ <mark>6</mark> marks] |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------|-------------------------|--|
|                                                                                                                                | I <sub>Qmin</sub> | = $ most negative I_L  =  vomin/R_L $                                                            | [2]                     |  |
|                                                                                                                                |                   | =  -4.5 V/1 k  = 4.5  mA                                                                         | [1]                     |  |
|                                                                                                                                | R                 | =( $\mathbf{V}^+$ - $\mathbf{V}_{\text{BE3(on)}}$ - $\mathbf{V}^-$ ) / $\mathbf{I}_{\mathbf{Q}}$ | [2]                     |  |
|                                                                                                                                |                   | =(5 - 0.6 - (-5))/4.5m = 2.09 k                                                                  | [1]                     |  |
| ii) For $v_0 = 0$ , find the power dissipated in the transistor $Q_1$ , and the power current source ( $Q_2$ , $Q_3$ , and R). |                   | for $Q_1$ , and the power dissipated in the [9 marks]                                            | •                       |  |
|                                                                                                                                | $P_{Q1}$          | $= (I_{C1})(V_{CE1})$                                                                            | [1]                     |  |
|                                                                                                                                |                   | -(1)(1) - (15m)(5(1)) - 225mW                                                                    | 111                     |  |

|                 | $= (I_Q)(V_{C1}-V_{E1}) = (4.5m)(5-0) = 22.5 mW$                          | [1]        |
|-----------------|---------------------------------------------------------------------------|------------|
| P <sub>Q2</sub> | = $(I_{C2})(V_{CE2})$<br>= $(I_Q)(V_{C2}-V_{E2}) = (4.5m)(0-5) = 22.5 mW$ | [1]<br>[1] |
| р               | $-(\mathbf{I}_{\mathbf{V}})(\mathbf{V}_{\mathbf{V}})$                     | r11        |

$$P_{Q3} = (I_{C3})(V_{CE3})$$
[1]  
= (I<sub>Q</sub>)(V<sub>BEon</sub>) = (4.5m)(0.6) = 2.7 mW [1]

$$P_{\text{Resistor}} = (I)^{2}(R)$$
[1]  
= (4.5m)^{2}(2.09k) = 42.3 mW [2]

iii) Determine the conversion efficiency for a symmetric sine-wave output voltage with peak value of 8V. [5 marks]

| $P_{L}$                   | $= 0.5(Vp)^2/R_L$                              | [1] |
|---------------------------|------------------------------------------------|-----|
|                           | $= 0.5(4.5)^2/(1k) = 10.125 \text{ mW}$        | [1] |
| $\mathbf{P}_{\mathbf{S}}$ | $= (V^{+}-(V^{-}))(2I_{Q})$                    | [1] |
|                           | =(10)(2x4.5m)=90 mW                            | [1] |
| Powe                      | er conversion efficiency = $P_L/P_S \ge 100\%$ |     |
| Effic                     | iency = 10.125m/90mx100% = 11.25%              | [1] |

#### **<u>Question 4</u>** [20 marks]

For the circuit in Figure 4, the transistor parameters are  $\beta = 100$  and  $V_A = \infty$ . The dc bias currents are as indicated in the figure.

- (a) Determine the input resistance  $R_i$ .
- (b) Determine the output resistance  $R_o$ .

[12 marks] [8 marks]



Figure 4

$$\begin{split} I_{C1} &= I_{C2} / (1+ \ ) = 0.5 \, m / (101) = 4.95 \mu A & [2] \\ r &= V_T / I_{C1} = (100) (0.026) / 4.95 \mu = 530.5 k \dot{a} & [2] \\ I_{C2} &= I_Q + I_{B3} = 0.5 m + I_{C3} / = 0.5 m + 0.01 m = 0.51 m A & [2] \\ r &= V_T / I_{C2} = (100) (0.026) / 0.51 m) = 5.098 k \dot{a} & [3] \\ Ri &= r &1 + (1+ \ )r &2 = 530.5 k + (101) (5.2 k) = 1.056 M \dot{a} & [3] \\ r &= V_T / I_{C3} = (100) (0.026) / (1m) = 2.6 k \dot{a} & [2] \\ ro2 &= \hat{O} \\ Re3 &= r &3 + 50 k / ro2 = r &3 + 50 k = 52.6 k \dot{a} & [3] \\ Ro &= 5 k / / [Re3 / (1+ \ )] = 472 \dot{a} & [3] \end{split}$$

# Appendix: BASIC FORMULA

# <u>BJT</u>

# $i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$ $i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal  $\beta = g_m r_{\pi}$   $r_{\pi} = \frac{\beta V_T}{I_{CQ}}$   $g_m = \frac{I_{CQ}}{V_T}$   $r_o = \frac{V_A}{I_{CQ}}$ 

# **MOSFET**

; N – MOSFET  

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$
  
 $i_D = K_n [v_{GS} - V_{TN}]^2$   
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$   
; P – MOSFET  
 $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$   
 $i_D = K_p [v_{SG} + V_{TP}]^2$   
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$ 

;Small signal

$$g_m = 2K_n \left( V_{GSQ} - V_{TN} \right) = 2\sqrt{K_n I_{DQ}}$$
$$r_o \approx \frac{1}{\lambda I_{DQ}}$$