

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 2 2014 / 2015

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: February 2015
TIME	: 3 hours

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **Six** (6) questions in **Ten** (10) pages.
- 2. Answer ALL questions.
- 3. Write all answers in the answer booklet provided. Use pen to write your answer.
- 4. Write answer to different question on **a new page**.
- 5. For all calculations, assume that $V_T = 26 \text{ mV}$.

THIS QUESTION PAPER CONSISTS OF TEN (10) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [15 marks]

The differential amplifier in Figure 1 is biased by a two-transistor BJT current source (consists of R_1 , Q_3 and Q_4). The transistor parameters are: $\beta = 100$ and $V_{EB}(on) = 0.7$ V. The Early voltage for transistors Q_3 and Q_4 is $V_{A3} = V_{A4} = 100$ V; while the Early voltage for transistors Q_1 and Q_2 is $V_{A1} = V_{A2} = \infty$. The differential amplifier differential-mode gain is 40 and the common-mode voltage gain is -0.005. State your assumptions when you answer the following questions:

(a) **Determine** v_E and v_{EC1} for common-mode input voltage $v_1 = v_2 = v_{cm} = -2.5$ V.

[5 marks]

- (b) **Determine** the **output voltage** of the differential amplifier if for the inputs $v_1 = 210 \sin \omega t$ μV and $v_2 = 90 \sin \omega t \mu V$. [6 marks]
- (c) **Determine** the **common-mode input resistance** of the differential amplifier if $2R_{icm} = r_{\mu} \| \left[(1 + \beta)(2R_o) \right] \| \left[(1 + \beta)r_o \right]$ [4 marks]

Figure 1

<u>Q1 (a)</u>	
$V_E = V_1 \circ V_{BE(on)} = -2.5 - 0.7 = -3.2$	[1.5]
$\mathbf{V}_{\mathrm{EC1}} = \mathbf{v}_{\mathrm{E}} \circ \mathbf{I}_{\mathrm{C1}} \mathbf{R}_{\mathrm{C}} \circ \mathbf{V}$	[1]
$I_{C1} = [/(1+)]I_{E1} = [/(1+)]I_Q/2 = (100/101)(0.5m/2) = 0.2475mA$	[1.5]
$V_{EC1} = -3.2 \text{ ó} (0.2475 \text{m})(8\text{k}) \text{ ó} (-5) = -0.18 \text{V}$	[1]

<u>Q1(b)</u>

$A_d = v_o/v_d = g_{m2}R_C/2$	
OR	
$v_o = = (g_{m2}R_C/2) v_d$	[2]
$g_{m2} = I_{C2}/V_T = 0.2475 \text{m}/0.026 = 9.519 \text{mA/V}$	[1]
$v_d = v1$ ó $v2 = 210sin(wt) -90sin(wt) \mu V = 120 sin (wt) \mu V$	[1.5]
$v_o = [(9.519m)(8k)(120\mu \sin(wt))]/2 = 4.569 \sin(wt) \mu V$	[1.5]

<u>Q1(c)</u>	
Assume rµ very large	[0.5]
ro2 for for the diff-amp transistor is Ô	[0.5]
Thus	
$2\text{Ricm} \cong (1+)(2\text{Ro})$	[1]
Ro is the output of a two-transistor current source	[0.5]
$Ro = V_A/I_Q = 100/0.5m = 200ká$	[1]
Ricm = (1+)Ro = (101)(200k) = 20.20Ma	[0.5]

Question 2 [15 marks]

Figure 2 shows a MOSFET diff-amp with a cascode active load. Assume that NMOS devices are available with the following parameters: $V_{TN} = 0.5 \text{ V}$, $k'_n = 80 \ \mu\text{A}/\text{V}^2$, $\lambda_n = 0.02 \text{ V}^{-1}$, and $(W/L)_1 = (W/L)_2 = 10$. Assume that PMOS devices are available with the following parameters: $V_{TP} = -1.0 \text{ V}$, $k'_p = 40 \ \mu\text{A}/\text{V}^2$, and $\lambda_p = 0.02 \text{ V}^{-1}$. The circuit parameters are $V^+ = 5 \text{ V}$ and $V^- = -5 \text{ V}$. The bias current is $I_Q = 0.2 \text{ mA}$.

- (a) **Determine** the output resistance, R_0 , of the cascode active load. [9 marks]
- (b) Find the differential-mode voltage gain, A_d . [6 marks]

Q2(a)

$$R_{O} = r_{O4} + r_{O6} (1 + g_{m} r_{O4}) \qquad \mathbf{OR} \qquad R_{O} \notin g_{m} r_{O4} r_{O6} \qquad [1]$$

and
$$r_0 = \frac{1}{M_{BQ}}$$
 [1]

$$I_{DQ} = \frac{I_Q}{2} = \frac{0.2m}{2} = 0.1mA$$
 [1]

$$r_{04} = r_{06} = \frac{1}{M_{BQ}} = \frac{1}{(0.02)(0.1m)} = 500k\Omega$$
 [2]

Given that $g_m = 2\sqrt{K_{\gamma m}I_{DQ}}$ [1]

$$g_m = 2 \sqrt{\frac{0.08}{2}(10)(0.1m)} = 0.4 \frac{mA}{V}$$
[1]

 $\therefore R_{O} = r_{O4} + r_{O6} (1 + g_{m} r_{O4}) = 500k + 500k (1 + (0.4)(500k)) = \underline{101 \text{ M}\Omega \text{ [2]}}$ OR $R_{O} \notin g_{m} r_{O4} r_{O6} = (0.4)(500k)(500k) = \underline{100 \text{ M}\Omega \text{ [2]}}$

Q2(b)

 $\begin{aligned} A_{d} &= g_{m}(r_{02} || R_{0}) \ [2] \\ A_{d} &= 0.4m(500k || 101M) \ [2] \\ \underline{A_{d}} &= 200 \ [2] \end{aligned}$

Question 3 [15 marks]

(a) Describe the operation of a class-B output stage as in Figure 3. The cut-in voltage for both transistors is 0.7 V. How is this output stage different from the idealized class-B output stage?
 [3 marks]

(b) A class-AB output stage with BJTs is shown in Figure 4. Reverse saturation current for every transistor is $I_S = 2 \times 10^{-15}$ A. Assume $+V_{CC} = +5$ V, $-V_{CC} = 0$ V, and $R_L = 1$ k Ω .

(i)	Find V_{BB} when $v_I = 0$, as such producing $i_{Cn} = i_{Cp} = 1$ mA.	[2 marks]
(ii)	Calculate i_{Cn} , i_{Cp} , and v_I to obtain $v_O = -3.5$ V.	[8 marks]
(:::)	Coloulate the neuron dissincted in D	[] montral

(iii) Calculate the power dissipated in R_L . [2 marks]

Q3 Answers:

Q3(a)

Any of the following key-phrases:

Any o	ij ine jouowing key-phrases.	
(1)	$v_I > +0.7$ V, Q_n turns on and operates as emitter follower	[1]
	I_L is positive, supplied thru Q_n , B-E junction of Q_p is reverse-biased	d
(11)	$v_I < -0.7 V$, Q_p turns on and operates as emitter follower	[1]
	Q_p sinks I_L , which is negative, B-E junction of Q_n is reverse-biased	
(111)	v_0 remains zero as long as -0.7V O v_I O+0.7V	[1]
	Dead band : range of input voltage where v_0 is zero \rightarrow Where both transistors are cut-off	
O3(b)		
(i) Fin	$d V_{BB}$	
	$i_{C_{R}} = I_{S} \exp(V_{RE}/V_{T})$	
	$V_{BE} = V_T \ln(i_{C_B}/I_S) = (26\text{m}) \ln(1\text{m}/2\text{x}10^{-15}) = 0.7004 \text{ V}$	[1]
	$V_{BB} = 2 V_{BE} = 2 \times 0.7004 = 1.40077 \text{ V}$	[1]
(ii) Cal	culate i_{Cn} , i_{Cp} , and v_I to obtain $v_O = -3.5$ V.	[Total = 8]
	$v_O = -3.5 \text{ V} = i_L R_L$	
→	$i_L = v_O / R_L = (-3.5 \text{V}) / (1 \text{k}) = -3.5 \text{ mA}$	[1]
	Therefore, Q_p is conducting and Q_n is OFF.	
	Approximate value, $i_{Cp} \in i_L$	FO F 1
	$i_{Cp} = I_S \exp(V_{EB}/V_T) = 3.5 \text{ mA}$	[0.5]
	$V_{EB} = V_T \ln(\iota_{Cp} / I_S) = (26\text{m}) \ln(3.5\text{m}/2\text{x}10^{10}) = 0.7329 \text{ V}$	[0.5]
	V = V = 1.40077 = 0.7220 = 0.6678 V	[0, 5]
د	$V_{BE} = V_{BB} - V_{EB} = 1.40077 - 0.7329 = 0.0078$ V $i_{e} = L_{e} \exp(V_{e} - V_{e}) = (2 \times 10^{-15}) \exp(0.6678 / 0.026) = 0.2857 \text{ m/s}$	[0.5]
	$i_{Cn} = i_{S} \exp(i_{BE}/i_{T}) = (2x10^{-1}) \exp(0.0078/0.020) = 0.2837 \text{ mA}$	[0.5]
	$i_{c} = i_{c} + i_{t}$	
→	$i_{Cn} = i_{Cn} \circ i_L = 0.2857 \text{ m} \circ (-3.5 \text{ m}) = -3.7857 \text{ mA}$	[0.5]
-	$V_{EP} = V_T \ln(i_{CP}/I_S) = (26\text{m}) \ln(3.7857\text{m}/2\text{x}10^{-15}) = 0.734997 \text{ V}$	[0.5]
	$(2011) \operatorname{m}(2010) $	[0.0]
	Actual values:	
	$V_{BE} = V_{BB}$ - $V_{EB} = 1.40077 - 0.734997 = 0.66577 V$	[0.5]
→	$i_{Cn} = I_S \exp(V_{BE}/V_T) = (2 \times 10^{-15}) \exp(0.66577/0.026) = 0.2642 \text{ mA}$	[0.5]
		-
→	$i_{C_{D}} = i_{C_{D}} \circ i_{I} = 0.2642 \text{ m} \circ (-3.5 \text{ m}) = 3.764 \text{ mA}$	[1]

$$l_{Cp} = l_{Cn} \circ l_L = 0.2642 \text{m} \circ (-3.5 \text{m}) = 3.764 \text{ mA}$$
 [1]

$$v_I = v_O - V_{EB} + V_{BB} / 2 = -3.5 \text{ o} 0.735 + 0.7004 = -3.535 \text{ V}$$
 [2]

(iii) The power dissipated in R_L ,

$$P_{RL} = i_L^2 R_L = (3.5)^2 (1k) = 12.25 \text{ mW}$$
[2]

Question 4 [20 marks]

Consider the multistage circuit in **Figure 5**. There are three distinctive stages namely the differential amplifier stage, the gain stage, and the output stage. The dc analysis performed by a software tool **LTSpice** on the multistage circuit resulted in an undesired value for the output voltage $v_0 = -0.3625$ V (Refer to Appendix A). You are **to analyse the dc characteristics of the circuit by hand analysis** (manual analysis) using only your scientific calculator. Let the bias current from the Widlar current source be **0.4 mA**. Following the dc analysis, **identify assumptions** you have made that leads to the undesired output voltage. Thus, **advise** on how to rectify the output voltage to an ideal dc value and how to increase the small signal voltage gain to 10^4 V/V. You may illustrate your ideas by redrawing or redefining the circuit parameters.

Figure 5

 $\begin{array}{l} \underline{Q4}\\ \hline Input \ stage:\\ I_Q = 0.4 \ \text{mA}\\ I_{C2} = 0.2 \ \text{mA} & (\text{Neglect base current in } Q1 \ \text{and } Q2) \\ vo2 = V^+ - I_{C2}R_C = 10 \ 6 \ (0.2m)(20k) = 6.0V \end{array} \tag{2}$

 $\begin{array}{ll} Gain \ stage: \\ I_{R4} = [vo2 \ \acute{o} \ V_{BE3} \ \acute{o} \ V_{BE4}]/R4 & (Assume \ V_{BE3} \ and \ V_{BE4} = 0.7V) & [2] \\ I_{R4} = [6 - 2(0.7)]/11.5k = 0.4mA \\ I_{R4} = I_{R5} & (Neglect \ base \ currents \ in \ Q3 \ and \ Q4) & [2] \\ vo3 = V^+ - (I_{R5}R5) = 10 - (04m)(5k) = 8V \end{array}$

Output Stage:

$I_{R6} = I_Q$	(Parallel transistors with $R3 = R2$)	[2]
-	(Neglect base current in Q6)	[2]

$vb6 = vo3 \circ V_{BE5} \circ I_{R6}R6$	(Assume $V_{BE5} = 0.7V$)	[2]
$vb6 = 8-0.7 \circ (0.4m)(16.5k) = 0.7 V$		

$$vo = vb6 - V_{BE7} = 0$$
 (Assume $V_{BE7} = 0.7V$) [2]

The solution:

- i. Base currents are neglected in all stages, dc voltage levels have been shifted several times through the stages. If the base currents are taken into account, the actual output voltage, vo, would not be at the ideal level of zero volt. Instead the dc level should be higher than calculated. In order to adjust the dc level shifts, due to neglecting the base currents, one of the following suggestions can be used to lover the output voltage to zero:
 - a. R1 and R2 can be reduced to increase IQ
 - b. R_C can be increased to reduce vo2
 - c. R5 can be increased to reduce vo3
 - d. R6 can be increased to raise the vb6 to a value equals to V_{BE7}
- ii. The assumptions made for $V_{BE} = 0.7$ V for all transistors is also the cause for output voltage to shift several times throughout the stages. If $V_{BE} = 0.6$ V is used in the calculations, the output voltage, vo would be lower towards a negative value. To increase the output voltage back to zero level, the following can be suggested:
 - a. Increase R2 and R3 to reduce $I_{\mbox{\scriptsize Q}}$
 - b. Reduce R_C to increase vo2
 - c. Reduce R5 to increase vo3
 - d. Reduce R6 to increase vb6

Marking Criteria:

Every assumption made and mentioned in the analysis deserves 1 mark ó capped at	[5	marks]
Analysis that leads to a value of $vo = \pm 0.5 V$	[5]	marks]
Suggest any two solutions in (i) OR (ii) with explanation /reason for suggestions	[6]	marks]
Solution/s to improve gain to 10^4 - use active loads for diff-amp circuit	[2]	marks]
and specific configuration of active loads	[2]	marks]

Question 5 [15 marks]

Consider the bias circuit portion of the 741 op-amp in Figure 6. Assume that the transistor parameters of $I_s = 5 \times 10^{-16}$ A. The bias voltages are given as ± 15 V.

- (a) Redesign the bias circuit to obtain $I_{REF} = 0.4$ mA and $I_{C10} = 40 \ \mu$ A. Determine the values of V_{BE11} , V_{EB12} , and V_{BE10} . Neglect the base currents. [9 marks]
- (b) **Determine** the values of I_{REF} and I_{C10} , using the resistor values found in (a) if $V_{BE}(on) = V_{EB}(on) = 0.6$ V. [6 marks]

Figure 6

Q5(a)

Using the equation, $I_{C} = I_{S} exp^{V_{BS}} / v_{T}$ [1]

$$V_{BE11} = V_{BE12} = V_T \ln\left(\frac{l_C}{l_S}\right)$$
[1]
$$V_{BE11} = 0.026 \ln\left(\frac{0.5 \times 10^{-3}}{5 \times 10^{-6}}\right) = 0.7126 V [1]$$

Find R_5 and R_4 ;

$$R_{5} = \frac{V^{+} - V_{EB12} - V_{BE11} - V^{-}}{I_{C10}} = \frac{15 - 0.7126 - 0.7126 + 15}{0.4m} = 71.44 \ k\Omega \ [2]$$

$$I_{C10}R_{4} = V_{T} ln \frac{I_{REF}}{I_{C10}}$$

$$R_{4} = \frac{0.026}{0.04m} ln \frac{0.4m}{0.04m} = 1.497 \ k\Omega \ [2]$$

$$V_{BE10} = V_{BE11} - I_{C10}R_4 = 0.7126 - 0.04m(1.497k) = 0.6527 V[2]$$

Q5(b)

$$I_{REF} = \frac{V^+ - V_{EB12} - V_{BE11} - V^-}{R_5} = \frac{15 - 0.6527 - 0.6527 + 15}{71.44k} = 0.4017 \ mA \ [3]$$
$$I_{C10}R_4 = V_T ln \frac{l_{REF}}{l_{C10}}$$
$$I_{C10}(1.497k) = (0.026) ln \frac{0.4017m}{l_{C10}} = 0.05987 \ mA \ [3]$$

Question 6 [20 marks]

- (a) With a <u>feedback resistor (R_2) of 250 kΩ</u>, design an amplifier <u>using op-amp</u> with a closed-loop gain which can be varied between -10 to -25 V/V. The closed-loop gain can be varied using a potentiometer (R_{1V}) and a fixed-value resistor (R_{1F}) . Draw clearly your circuit design. [6 marks]
- (b) Refer to **Figure 7**. Op-amp is ideal.
 - (i) **Derive** the expression for output v_0 as a function of inputs v_{I1} and v_{I2} . [4 marks]
 - (ii) Calculate v_0 when $R_1 = 50 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 20 \text{ k}\Omega$, $R_4 = 40 \text{ k}\Omega$, $R_5 = 20 \text{ k}\Omega$, $v_{I1} = +0.25 \text{ V}$, and $v_{I2} = -0.40 \text{ V}$. [2 marks]

Figure 7

Figure 8

(c) A general output equation for a difference amplifier shown in Figure 8 is

$$v_O = A_d v_d + A_{cm} v_{cm}$$

For the **difference amplifier** in the **Figure 8**, the circuit parameters are $R_1 = R_3 = 10 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, and $R_4 = 110 \text{ k}\Omega$ and the output voltage equation is as follows:

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{R_{4} / R_{3}}{1 + R_{4} / R_{3}}\right) v_{I2} - \left(\frac{R_{2}}{R_{1}}\right) v_{I1}$$

$$v_{I1} = v_{cm} - \frac{v_{d}}{2} \quad v_{I2} = v_{cm} + \frac{v_{d}}{2}$$
re

where

Find A_d , A_{cm} , and then calculate the *CMRR* in dB. [8 marks]

-END OF QUESTION PAPER-

Q6(a)

$$A_{\nu} = -R_2/(R_{1F} + R_{1V})$$
^[1]

$$R_2 = 250 \text{ k}$$
 . R_{1F} is a constant value resistor.

 R_{1V} is a potentiometer. Gain is maximum, i.e. -25, when $R_{1V} = 0$.

$$A_{v1} = -25 = -R_2/(R_{1F} + R_{1V}) = -250k/(R_{1F} + 0)$$
[1]

$$R_{1F} = 10 \text{ k}$$
 [0.5]

$$A_{\nu 2} = -10 = -R_2/(R_{1F} + R_{1V}) = -250k/(10k + R_{1V})$$
[1]

$$R_{1V} = 15 \text{ k}$$
 [0.5]

Q6(b)(i)

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) v_{1} \qquad [0.5]$$

$$v_{1} = v_{2} \qquad [0.5]$$

$$\frac{v_{I1} - v_{2}}{R_{3}} + \frac{v_{I2} - v_{2}}{R_{4}} = \frac{v_{2} - 0}{R_{5}} \qquad [1]$$

$$\frac{v_{I1}}{R_{3}} + \frac{v_{I2}}{R_{4}} = v_{2} \left(\frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}\right)$$

$$v_{2} = \frac{\frac{v_{I1}}{R_{3}} + \frac{v_{I2}}{R_{4}}}{\left(\frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}\right)}$$
[1]
$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \frac{1}{\left(\frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}\right)} \left(\frac{v_{I1}}{R_{3}} + \frac{v_{I2}}{R_{4}}\right)$$
[1]

Q6(b)(ii)

$$v_{o} = \left(1 + \frac{R_{2}}{R_{1}}\right) \frac{1}{\left(\frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}\right)} \left(\frac{v_{I1}}{R_{3}} + \frac{v_{I2}}{R_{4}}\right)$$
[0.5]
$$v_{o} = \left(1 + \frac{100k}{50k}\right) \frac{1}{\left(\frac{1}{20k} + \frac{1}{40k} + \frac{1}{20k}\right)} \left(\frac{0.25}{20k} + \frac{-0.40}{40k}\right)$$
[1]
$$v_{o} = \left(3\right) \frac{40k}{5} \left(\frac{0.25}{20k} + \frac{-0.40}{40k}\right) = 0.06 \text{ V}$$
[0.5]

Q6(c)

 $R_1 = R_3 = 10 \text{ k}\Omega, R_2 = 100 \text{ k}\Omega, \text{ and } R_4 = 110 \text{ k}\Omega$

$$v_{O} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{R_{4}/R_{3}}{1 + R_{4}/R_{3}}\right) v_{I2} - \left(\frac{R_{2}}{R_{1}}\right) v_{I1}$$

$$v_{O} = \left(1 + \frac{100k}{10k}\right) \left(\frac{110k/10k}{1 + 110k/10k}\right) v_{I2} - \left(\frac{100k}{10k}\right) v_{I1}$$

$$v_{O} = (1 + 10) \left(\frac{11}{12}\right) v_{I2} - 10 v_{I1}$$

$$v_{O} = 10.083 v_{I2} - 10 v_{I1} = 10.083 (v_{cm} + \frac{v_{d}}{2}) - 10 (v_{cm} - \frac{v_{d}}{2})$$

$$v_{O} = 10.0415 v_{d} + 0.083 v_{cm}$$

$$A_{d} = 10.0415, \quad A_{cm} = 0.083$$

$$1.1$$

$$CMRR = 20 \log_{10}[10.0415/0.083] = 41.65 \text{ dB}$$

Figure A-1: LTSpice Simulation for Figure 5 in Question 4.

APPENDIX B

BASIC FORMULA

<u>BJT</u>

$$i_C = I_S e^{v_{BE}/V_T}$$
; NPN
 $i_C = I_S e^{v_{EB}/V_T}$; PNP

$$i_{C} = \beta i_{B} = \alpha i_{E}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal $\beta = g_m r_\pi$ $r_\pi = \frac{\beta V_T}{I_{CQ}}$ $g_m = \frac{I_{CQ}}{V_T}$ $r_o = \frac{V_A}{I_{CQ}}$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_{\gamma}I_{DQ}}$$
$$r_o \cong \frac{1}{\lambda I_{DO}}$$