Student ID Number: Model Answer

Section:

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 1

SEMESTER 2, ACADEMIC YEAR 2014/2015 Date: 6 November 2014 Time: 15 minutes

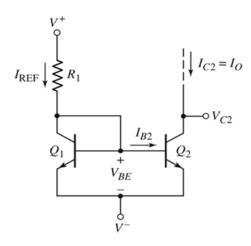
Question:

Refer to Figure 1. All transistors are matched.

The circuit parameters are: $V^+ = 7.5 \text{ V}$ and $V^- = -7.5 \text{ V}$.

The transistor parameters are: $\beta = 100$, $V_{BE}(on) = 0.6$ V, and $V_A = 150$ V.

(a) **Design** a two-transistor current source using all the parameters given above so that $I_{B2} = 6 \mu A$.


[8 marks]

(b) Find the **output resistance** (R_0) of the two-transistor current source.

[2 marks]

Show clearly all calculations as marks are given according to this.

Answer:

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; ppp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

Figure 1

;Small signal

$$I_{O} = I_{C2} = \beta I_{B2} = [1]$$

$$= (100)(6\mu) = [1]$$

$$= 0.6 \text{ mA} = [0.5]$$

$$I_{REF} = I_{O} (1 + 2/\beta) = [1]$$

$$= (0.6\text{m})(1 + 2/100) = [1]$$

$$= 0.612 \text{ mA} = [0.5]$$

$$R_{1} = (V^{+} - V_{BE} - V^{-}) / I_{REF} = [1.5]$$

$$= (7.5 - 0.6 - (-7.5)) / (0.612\text{m}) = 23.529 \text{ k}\Omega = [0.5]$$

$$R_{O} = r_{O2} = V_{A} / I_{O} = [1]$$

$$= (150) / (0.6\text{m}) = 250 \text{ k}\Omega = [0.5]$$

$$\beta = g_m r_n$$

$$r_n = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

Student ID Number: Model Answer

Section:

section:

EEEB273 - Quiz 1

SEMESTER 2, ACADEMIC YEAR 2014/2015 Date: 6 November 2014 Time: 15 minutes Lecturer: Dr. Jamaludin Bin Omar

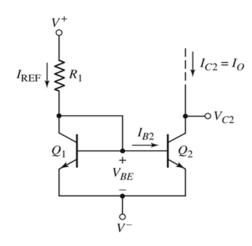
Question:

Refer to Figure 1. All transistors are matched.

The circuit parameters are: $V^+ = 7.0 \text{ V}$ and $V^- = -7.0 \text{ V}$.

The transistor parameters are: $\beta = 100$, $V_{BE}(on) = 0.6$ V, and $V_A = 150$ V.

(a) **Design** a two-transistor current source using all the parameters given above so that $I_{B2} = 7 \mu A$.


[8 marks]

(b) Find the **output resistance** (R_0) of the two-transistor current source.

[2 marks]

Show clearly all calculations as marks are given according to this.

Answer:

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; ppp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

Figure 1

;Small signal

$$I_{O} = I_{C2} = \beta I_{B2} = [1]$$

$$= (100)(7\mu) = [0.5]$$

$$I_{REF} = I_{O} (1 + 2/\beta) = [0.5]$$

$$I_{REF} = (0.7\text{m})(1 + 2/100) = [1]$$

$$= 0.714 \text{ mA} = [0.5]$$

$$R_{1} = (V^{+} - V_{BE} - V^{-}) / I_{REF} = [1.5]$$

$$= (7.0 - 0.6 - (-7.0)) / (0.714\text{m}) = 18.767 \text{ k}\Omega = [0.5]$$

$$R_{O} = r_{o2} = V_{A} / I_{O} = [1]$$

$$= (150) / (0.7\text{m}) = [0.5]$$

$$= 214.28 \text{ k}\Omega = [0.5]$$

$$\beta = g_m r_{\pi}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

Student ID Number: Model Answer

Section:

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 1

SEMESTER 2, ACADEMIC YEAR 2014/2015 Date: 6 November 2014 Time: 15 minutes

Question:

Refer to **Figure 1**. All transistors are matched.

The circuit parameters are: $V^+ = 7.0 \text{ V}$ and $V^- = -7.0 \text{ V}$.

The transistor parameters are: $\beta = 120$, $V_{BE}(on) = 0.6$ V, and $V_A = 150$ V.

(a) **Design** a two-transistor current source using all the parameters given above so that $I_{B2} = 7 \mu A$.

[8 marks]

(b) Find the **output resistance** (R_0) of the two-transistor current source.

[2 marks]

Show clearly all calculations as marks are given according to this.

Answer:

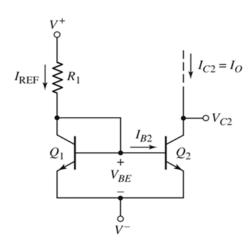


Figure 1

 $I_0 = I_{C2}$ $=\beta I_{B2}$ [1] $= (120)(7\mu)$ [1] = 0.84 mA[0.5] I_{REF} $=I_{O}(1+2/\beta)$ [1] $= (0.84 \,\mathrm{m})(1 + 2/120)$ [1] = 0.854 mA[0.5] $= (V^+ - V_{BE} - V^-) / I_{REF}$ R_1 [1.5] = (7.0 - 0.6 - (-7.0)) / (0.854m)[1] $= 15.691 \text{ k}\Omega$ [0.5] R_{O} $= r_{o2} = V_A / I_O$ [1] = (150) / (0.84m)[0.5] $= 178.57 k\Omega$ [0.5]

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; pnp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_{\pi}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

Student ID Number: Model Answer

Section:

EEEB273 - Quiz 1

SEMESTER 2, ACADEMIC YEAR 2014/2015

Date: 6 November 2014 Time: 15 minutes

Lecturer: Dr. Jamaludin Bin Omar

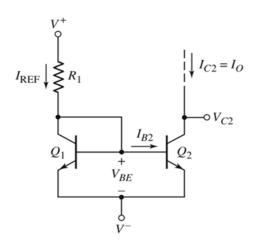
Question:

Refer to Figure 1. All transistors are matched.

The circuit parameters are: $V^+ = 7.5 \text{ V}$ and $V^- = -7.5 \text{ V}$.

The transistor parameters are: $\beta = 120$, $V_{BE}(on) = 0.6$ V, and $V_A = 150$ V.

(a) **Design** a two-transistor current source using all the parameters given above so that $I_{B2} = 6 \mu A$.


[8 marks]

(b) Find the **output resistance** (R_0) of the two-transistor current source.

[2 marks]

Show clearly all calculations as marks are given according to this.

Answer:

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; pnp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

Figure 1

;Small signal

$$\beta = g_m r_{\pi}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$