Dr JBO Name:

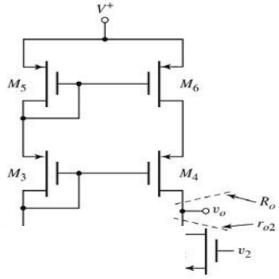
Student ID Number: Model Answer

Section:

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 4

SEMESTER 2, ACADEMIC YEAR 2014/2015 Date: 18 December 2014 Time: 15 minutes


Question:

For a MOSFET differential amplifier with cascode active load shown in Figure 1 the transistor parameters are $g_m = 1.2$ mA/V for all transistors; $K_n = 0.4$ mA/V² and $\lambda_n = 0.020$ V⁻¹ for N-MOSFET transistors; and $\lambda_p = 0.015$ V⁻¹ for P-MOSFET transistors.

Find bias current (I_0) and calculate one-sided differential mode gain (A_d) with output taken at v_0 . Show clearly all formula used and calculations done as marks are given according to this.

[10 marks]

Answer:

$$g_{m} = 2 \sqrt{[K_{n2} \times I_{DQ}]}$$

$$= 2 \sqrt{[K_{n2} \times (I_{Q}/2)]}$$

$$I_{Q} = [g_{m}/2]^{2} \times [2/K_{n2}]$$

$$I_{Q} = [g_{m}/2]^{2} \times [2/K_{n2}]$$

$$= [g_{m}]^{2}/[2K_{n2}]$$

$$= [1.2m]^{2}/[2 \times 0.4m] = 1.8 \text{ mA}$$
[1]

$$= [1.2 \text{m}]^{2} / [2 \times 0.4 \text{m}] = 1.8 \text{ mA}$$
 [1]

$$I_{DQ} = I_Q / 2 = 0.9 \text{ mA}$$
 [1]

$$r_{02} = 1 / (\lambda_n I_{DQ})$$
 [1]
= 1 / (0.020 x 0.9m) = 55.556 k Ω [1]

$$r_{04} = r_{06} = 1 / (\lambda_p I_{DQ})$$
 [1]
= 1 / (0.015 x 0.9m) = 74.074 k Ω [1]

$$R_O = g_m r_{04} r_{06}$$

= (1.2m)(74.074k)(74.074k)
= 6.584 M Ω [1]

$$A_d = g_m (r_{02} || R_0)$$
= (1.2m)(55.556k || 6.584M)
= 66.109 V/V [1]

: N - MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

$$i_D = K_n [v_{GS} - V_{TN}]^2$$

$$K_n = \frac{k_n}{2} \cdot \frac{W}{I}$$

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$
$$i_D = K_p [v_{SG} + V_{TP}]^2$$
$$K_p = \frac{k_p}{2} \cdot \frac{W}{L}$$

$$g_m = 2\sqrt{K_? I_{DQ}}$$

$$r_o \cong \frac{1}{\lambda I_{DQ}}$$

Dr JBO Name:

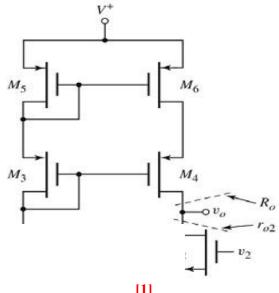
Student ID Number: Model Answer

Section:

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 4

SEMESTER 2, ACADEMIC YEAR 2014/2015 Date: 18 December 2014 Time: 15 minutes


Question:

For a MOSFET differential amplifier with cascode active load shown in Figure 1 the transistor parameters are $g_m = 1.3$ mA/V for all transistors; $K_n = 0.4$ mA/V² and $\lambda_n = 0.015$ V⁻¹ for N-MOSFET transistors; and $\lambda_p = 0.020$ V⁻¹ for P-MOSFET transistors.

Find bias current (I_0) and calculate one-sided differential mode gain (A_d) with output taken at v_0 . Show clearly all formula used and calculations done as marks are given according to this.

[10 marks]

Answer:

$$g_{m} = 2 \sqrt{[K_{n2} \times I_{DQ}]}$$

$$= 2 \sqrt{[K_{n2} \times (I_{Q}/2)]}$$

$$= [g_{m}/2]^{2} \times [2/K_{n2}]$$

$$I_{Q} = [g_{m}/2]^{2} \times [2/K_{n2}]$$

$$= [g_{m}]^{2}/[2 K_{n2}]$$

$$= [1.3m]^{2}/[2 \times 0.4m] = 2.113 \text{ mA}$$
[1]

$$= [1.3m]^{2} / [2 \times 0.4m] = 2.113 \text{ mA}$$

$$I_{DQ} = I_Q/2 = 1.056 \text{ mA}$$
 [1]

$$r_{02} = 1 / (\lambda_n I_{DQ})$$
 [1]
= 1 / (0.015 x 1.056m) = 63.116 k Ω [1]

$$r_{04} = r_{06} = 1 / (\lambda_p I_{DQ})$$
 [1]
= 1 / (0.020 x 1.056m) = 47.337 k Ω [1]

$$R_O = g_m r_{04} r_{06}$$

= (1.3m)(47.337k)(47.337k)
= 2.913 M Ω [1]

$$A_d = g_m (r_{02} || R_O)$$
 [1]
= (1.3m)(63.116k || 2.913M)
= 80.311 V/V [1]

: N - MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

$$i_D = K_n [v_{GS} - V_{TN}]^2$$

$$K_n = \frac{k_n'}{2} \cdot \frac{W}{L}$$

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$
$$i_D = K_p [v_{SG} + V_{TP}]^2$$
$$K_p = \frac{k_p}{2} \cdot \frac{W}{L}$$

$$g_m = 2\sqrt{K_? I_{DQ}}$$

$$r_o \cong \frac{1}{\lambda I_{DQ}}$$

Name: **Dr JBO**

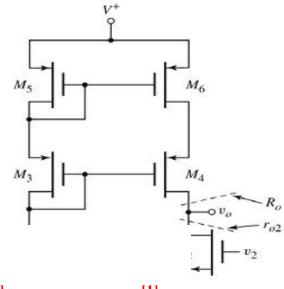
Student ID Number: Model Answer

Section:

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 4

SEMESTER 2, ACADEMIC YEAR 2014/2015 Date: 18 December 2014 Time: 15 minutes


Question:

For a MOSFET differential amplifier with cascode active load shown in Figure 1 the transistor parameters are $g_m = 1.4$ mA/V for all transistors; $K_n = 0.4$ mA/V² and $\lambda_n = 0.020$ V⁻¹ for N-MOSFET transistors; and $\lambda_p = 0.015$ V⁻¹ for P-MOSFET transistors.

Find bias current (I_Q) and calculate one-sided differential mode gain (A_d) with output taken at v_o . Show clearly all formula used and calculations done as marks are given according to this.

[10 marks]

Answer:

$$g_m = 2 \sqrt{[K_{n2} \times I_{DQ}]}$$

= $2 \sqrt{[K_{n2} \times (I_Q/2)]}$

$$I_{Q} = [g_{m}/2]^{2} \times [2/K_{n2}]$$
 [1]
= $[g_{m}]^{2}/[2K_{n2}]$
= $[1.4m]^{2}/[2 \times 0.4m] = 2.450 \text{ mA}$ [1]

$$I_{DQ} = I_Q / 2 = 1.225 \text{ mA}$$
 [1]

$$r_{02} = 1 / (\lambda_n I_{DQ})$$
 [1]
= 1 / (0.020 x 1.225m) = 40.816 k Ω [1]

$$r_{04} = r_{06} = 1 / (\lambda_p I_{DQ})$$
 [1]
= 1 / (0.015 x 1.225m) = 54.422 k Ω [1]

$$R_O = g_m r_{04} r_{06}$$
= (1.4m)(54.422k)(54.422k)
= 4.146 M\Omega [1]

$$A_d = g_m (r_{02} || R_O)$$
 [1]
= (1.4m)(40.816k || 4.146M)
= 56.586 V/V [1]

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

$$i_D = K_n [v_{GS} - V_{TN}]^2$$

$$K_n = \frac{k_n'}{2} \cdot \frac{W}{L}$$

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

$$i_D = K_p [v_{SG} + V_{TP}]^2$$

$$K_p = \frac{k_p}{2} \cdot \frac{W}{L}$$

;Small signal

$$g_m = 2\sqrt{K_? I_{DQ}}$$

$$r_o \cong \frac{1}{\lambda I_{DQ}}$$

Name: **Dr JBO**

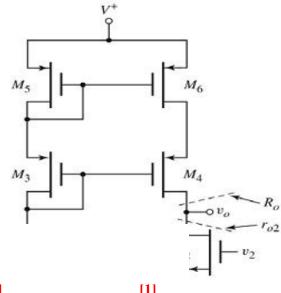
Student ID Number: Model Answer

Section:

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 4

SEMESTER 2, ACADEMIC YEAR 2014/2015 Date: 18 December 2014 Time: 15 minutes


Question:

For a MOSFET differential amplifier with cascode active load shown in Figure 1 the transistor parameters are $g_m = 1.5$ mA/V for all transistors; $K_n = 0.4$ mA/V² and $\lambda_n = 0.015$ V⁻¹ for N-MOSFET transistors; and $\lambda_p = 0.020$ V⁻¹ for P-MOSFET transistors.

Find bias current (I_Q) and calculate one-sided differential mode gain (A_d) with output taken at v_o . Show clearly all formula used and calculations done as marks are given according to this.

[10 marks]

Answer:

$$g_{m} = 2 \sqrt{[K_{n2} \times I_{DQ}]}$$

$$= 2 \sqrt{[K_{n2} \times (I_{Q}/2)]}$$

$$= [g_{m}/2]^{2} \times [2/K_{n2}]$$

$$I_Q = [g_m/2]^2 \times [2/K_{n2}]$$
 [1]
= $[g_m]^2/[2K_{n2}]$
= $[1.5m]^2/[2 \times 0.4m] = 2.813 \text{ mA}$ [1]

$$I_{DQ} = I_Q/2 = 1.406 \text{ mA}$$
 [1]

$$r_{02} = 1 / (\lambda_n I_{DQ})$$
 [1]
= 1 / (0.015 x 1.406m) = 47.407 k Ω [1]

$$r_{04} = r_{06} = 1 / (\lambda_p I_{DQ})$$
 [1]
= 1 / (0.020 x 1.406m) = 35.556 k Ω [1]

$$R_O = g_m r_{04} r_{06}$$

= (1.5m)(35.556k)(35.556k)
= 1.896 M Ω [1]

$$A_d = g_m (r_{o2} || R_O)$$
 [1]
= (1.5m)(47.407k || 1.896M)
= 69.377 V/V [1]

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

$$i_D = K_n [v_{GS} - V_{TN}]^2$$

$$K_n = \frac{k_n'}{2} \cdot \frac{W}{L}$$

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$
$$i_D = K_p [v_{SG} + V_{TP}]^2$$
$$K_p = \frac{k_p}{2} \cdot \frac{W}{L}$$

$$g_m = 2\sqrt{K_? I_{DQ}}$$

$$r_o \cong \frac{1}{\lambda I_{DQ}}$$