Name:Dr JBOStudent ID Number:Model AnswerSection:Lecturer:Dr. Jamaludin Bin Omar

Question:

Study the bias circuit and input stage of 741 operational amplifier shown in Figure 1 carefully. Assume V_{BE} for npn = V_{EB} for pnp = 0.7 V. Neglect dc base currents.

Determine the value of resistor R_5 if bias current for Q_1 is 8 μ A, and $V^+ = +12$ V and V = -12 V.

Write your answer using pen, in 4 decimal points, with proper Units for all the parameters.

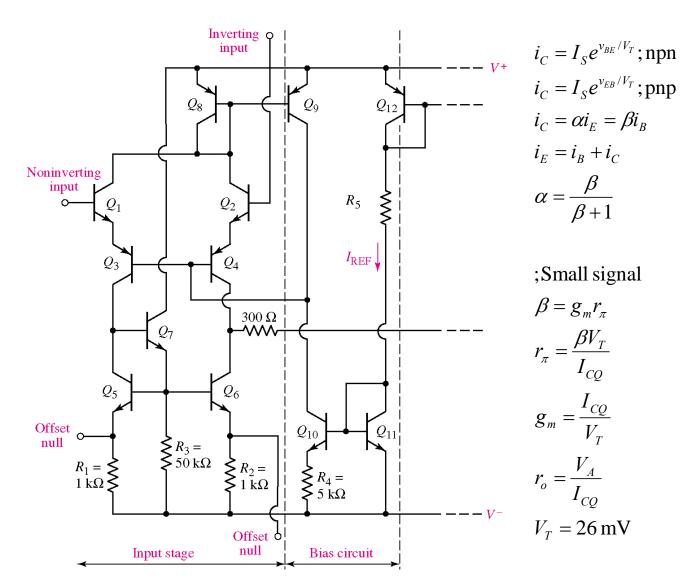


Figure 1: Bias circuit and input stage of 741 op-amp.

Answer:

I _{C1} I _{C10}	= 8 μ A = $I_{C8} / 2 = I_{C9} / 2$ = $I_{C10} / 2$ = 2 x I_{C1} = 16 μ A	[1] [1] [1]
I _{C10} R ₄ I _{REF}	$= V_T \ln(I_{REF} / I_{C10})$ = $I_{C10} \exp[I_{C10} R_4 / V_T]$ = (16µ) $\exp[(16µ x 5k) / (26m)]$ = 0.347 mA	[1] [1] [1] [1]
I _{REF} R ₅	$= (V^{+} - V - V_{EB12} - V_{BE11}) / R_{5}$ = (V^{+} - V - V_{EB12} - V_{BE11}) / I_{REF} = (12 - (-12) - 0.7 - 0.7) / (0.347m) = 65.129 k\Omega	[1] [1] [1]

Name:Dr JBOStudent ID Number:Model AnswerSection:Lecturer:Dr. Jamaludin Bin Omar

Question:

Study the bias circuit and input stage of 741 operational amplifier shown in Figure 1 carefully. Assume V_{BE} for npn = V_{EB} for pnp = 0.7 V. Neglect dc base currents.

Determine the value of resistor R_5 if bias current for Q_1 is 8.5 μ A, and $V^+ = +12$ V and V = -12 V.

Write your answer using pen, in 4 decimal points, with proper Units for all the parameters.

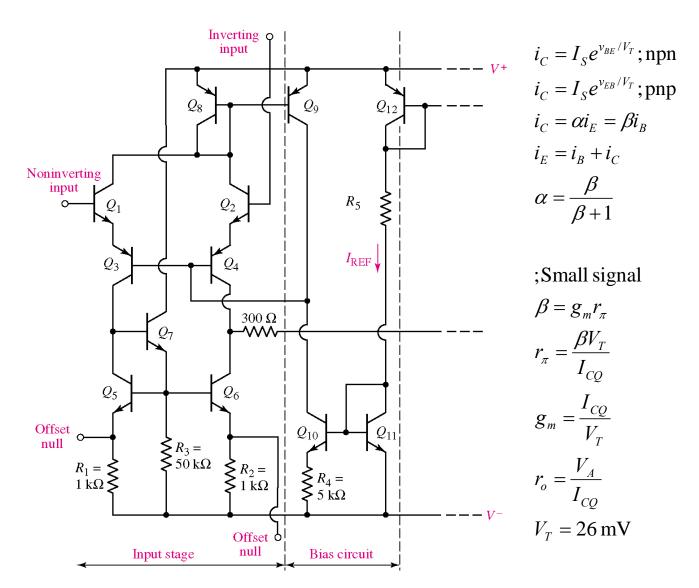


Figure 1: Bias circuit and input stage of 741 op-amp.

Answer:

I _{C1} I _{C10}	= 8.5 μ A = $I_{C8} / 2 = I_{C9} / 2$ = $I_{C10} / 2$ = 2 x I_{C1} = 17 μ A	[1] [1] [1]
I _{C10} R ₄ I _{REF}	$= V_T \ln(I_{REF} / I_{C10})$ = $I_{C10} \exp[I_{C10} R_4 / V_T]$ = (17µ) exp[(17µ x 5k) / (26m)] = 0.4469 mA	[1] [1] [1] [1]
I _{REF} R ₅	$= (V^{+} - V - V_{EB12} - V_{BE11}) / R_{5}$ = (V^{+} - V - V_{EB12} - V_{BE11}) / I_{REF} = (12 - (-12) - 0.7 - 0.7) / (0. 4469m) = 50.570 kΩ	[1] [1] [1]

Name:Dr JBOStudent ID Number:Model AnswerSection:Lecturer:Dr. Jamaludin Bin Omar

Question:

Study the bias circuit and input stage of 741 operational amplifier shown in Figure 1 carefully. Assume V_{BE} for npn = V_{EB} for pnp = 0.7 V. Neglect dc base currents.

Determine the value of resistor R_5 if bias current for Q_1 is 8.5 µA, and $V^+ = +10$ V and V = -10 V.

Write your answer using pen, in 4 decimal points, with proper Units for all the parameters.

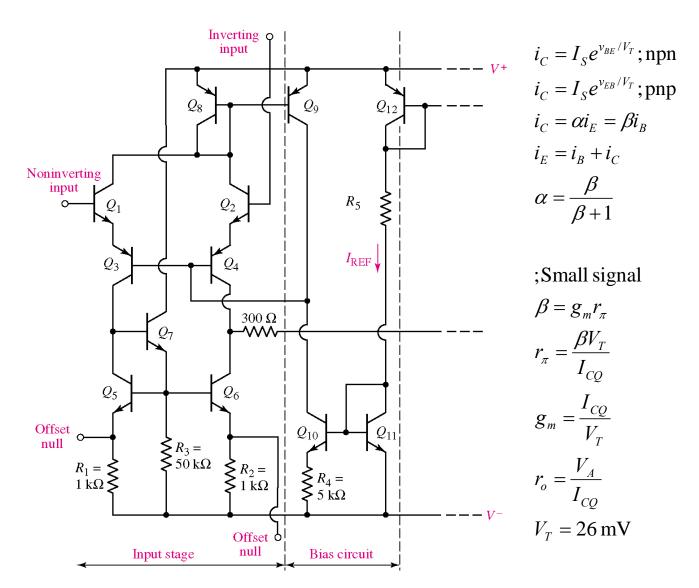


Figure 1: Bias circuit and input stage of 741 op-amp.

I _{C1} I _{C10}	= 8.5 μ A = $I_{C8} / 2 = I_{C9} / 2$ = $I_{C10} / 2$ = 2 x I_{C1} = 17 μ A	[1] [1] [1]
$I_{C10} R_4$ I_{REF}	$= V_T \ln(I_{REF} / I_{C10})$ = $I_{C10} \exp[I_{C10} R_4 / V_T]$ = (17µ) exp[(17µ x 5k) / (26m)] = 0.4469 mA	[1] [1] [1] [1]
I _{REF} R ₅	$= (V^{+} - V - V_{EB12} - V_{BE11}) / R_{5}$ = (V^{+} - V - V_{EB12} - V_{BE11}) / I_{REF} = (10 - (-10) - 0.7 - 0.7) / (0. 4469m) = 41.620 k\Omega	[1] [1] [1]

Name:Dr JBOStudent ID Number:Model AnswerSection:Lecturer:Dr. Jamaludin Bin Omar

Question:

Study the bias circuit and input stage of 741 operational amplifier shown in Figure 1 carefully. Assume V_{BE} for npn = V_{EB} for pnp = 0.7 V. Neglect dc base currents.

Determine the value of resistor R_5 if bias current for Q_1 is 8 μ A, and $V^+ = +10$ V and V = -10 V.

Write your answer using pen, in 4 decimal points, with proper Units for all the parameters.

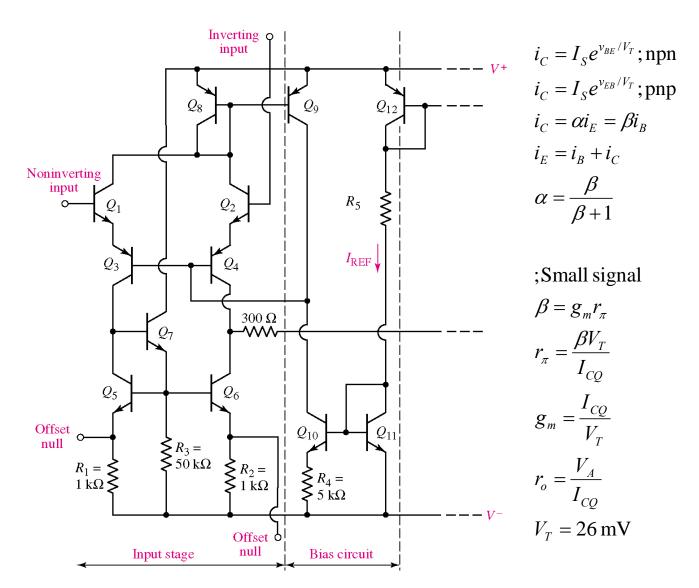


Figure 1: Bias circuit and input stage of 741 op-amp.

Answer:

I _{C1} I _{C10}	= 8 μ A = $I_{C8} / 2 = I_{C9} / 2$ = $I_{C10} / 2$ = 2 x I_{C1} = 16 μ A	[1] [1] [1]
I _{C10} R ₄ I _{REF}	$= V_T \ln(I_{REF} / I_{C10})$ = $I_{C10} \exp[I_{C10} R_4 / V_T]$ = (16µ) exp[(16µ x 5k) / (26m)] = 0.347 mA	[1] [1] [1] [1]
I _{REF} R ₅	$= (V^{+} - V - V_{EB12} - V_{BE11}) / R_{5}$ = (V^{+} - V - V_{EB12} - V_{BE11}) / I_{REF} = (10 - (-10) - 0.7 - 0.7) / (0.347m) = 53.602 k\Omega	[1] [1] [1]