Name:	MODEL ANSWER		G
Student ID Number:	MODEL ANSWER		¥
Section:	MODEL ANSWER	UNIVERSITI TENAGA	
Lecturer: Dr Azni Wati/ Dr Jamaludin/		NASIONAL	
Dr Jehana Ermy			

College of Engineering

Department of Electronics and Communication Engineering

Test 1

SEMESTER 2, ACADEMIC YEAR 2014/2015

Subject Code	:	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	:	6 December 2014
Time Allowed	:	1½ hours

Instructions to the candidates:

- 1. Write your Name, Student ID number, and Section number. Indicate your Lecturer.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.
- 5. For all calculations, use $V_T = 26$ mV when necessary.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question No.	1	2	3	Total
Marks				

BASIC FORMULA

\underline{BJT} $i_{C} = I_{S} e^{v_{BE}/V_{T}}; npn$ $i_{C} = I_{S} e^{v_{EB}/V_{T}}; pnp$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_{\pi}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$
; P – MOSFET
 $v_{SD}(\text{sat}) = v_{SG} + V_{TP}$
 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_2 I_{DQ}}$$

 $r_o \cong \frac{1}{\lambda I_{DQ}}$

<u>Question 1</u> [30 marks]

The circuit parameters of a Widlar current source shown in Figure 1 are $V^+=+5$ V, and V=-5 V. The transistor parameters are $\beta = 120$ and $V_A = 80$ V. The reference current is 10 times the bias current and is established by a resistance R_1 . The forward-active operation for transistor Q_1 is $V_{BE1} = 0.7$ V at 1 mA. Let the bias current $I_O = 50$ µA.

(a)	Determine V_{BE1} , V_{BE2} , and R_1 .	[12 marks]
(b)	Neglect base currents and calculate the value for emitter resistance R_E .	[5 marks]
(c)	Determine the Widlar current source output resistance, R_0 .	[8 marks]

(d) **Determine** the percent change in I_0 if V_{C2} changes by 5 V. [5 marks]

Answer for Question 1

(a)

$$V_{BE} = V_T \ln(I_C / I_S)$$

 $I_S = I_C / \{\exp(V_{BE} / V_T)\}$ [1]
 $= (1m) / \{\exp(0.7 / 0.026)\}$ [1]
 $= 2.03 \times 10^{-15} \text{ A}$ [0.5]

$$I_O = 50 \ \mu A$$

$$I_{REF} = 10 \ x \ I_O = 10 \ x \ 50 \ \mu A = 0.5 \ m A \qquad [2]$$

At
$$I_{REF} = 0.5 \text{ mA}$$
,
 $V_{BE1} = V_T \ln(I_{REF} / I_S)$ [1]
 $= (0.026) \ln(0.5 \text{ m} / 2.03 \text{ x } 10^{-15})$ [1]
 $= 0.682 \text{ V}$ [0.5]

$$V_{BE2} = V_T \ln(I_O / I_S)$$
[1]
= (0.026) ln(50µ / 2.03 x 10⁻¹⁵) [1]
= 0.6221 V [0.5]

$$I_{REF} = (V^{+} - V_{BE1} - V) / R_{1}$$

$$R_{1} = (V^{+} - V_{BE1} - V) / I_{REF}$$
[1]

$$= (5 - 0.682 + 5) / (0.5m)$$
[1]

$$= 18.636 \text{ k}\Omega$$
[0.5]

(b)

$$I_O R_E = V_T \ln(I_{REF} / I_O)$$

 $R_E = (V_T / I_O) \ln(I_{REF} / I_O)$ [2]
 $= (26m / 50\mu) \ln(0.5m / 50\mu)$ [2]
 $= 1.198 \text{ k}\Omega$ [1]

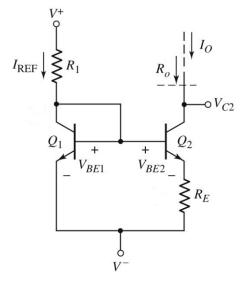


Figure 1

Answer for Question 1

(c)

$$r_{o2} = \frac{V_A}{I_O} = \frac{80}{50\mu} = 1.6 \text{ M}\Omega$$
 [1.5]

$$g_{m2} = \frac{I_o}{V_T} = \frac{50\mu}{0.026} = 1.923 \,\mathrm{mA/V}$$
 [1.5]

$$r_{\pi 2} = \frac{\beta V_T}{I_0} = \frac{(120)(0.026)}{50\mu} = 62.4 \,\mathrm{k\Omega}$$
 [1.5]

$$R_E = R_E \parallel r_{\pi 2} = 1.177 \,\mathrm{k\Omega}$$
 [1]

$$R_{o} = r_{o2} \left[1 + g_{m2} \left(R_{E} \| r_{\pi 2} \right) \right]$$
^[1]

$$R_o = (1.6M) [1 + (1.923m) (1.198k || 62.4k)] = 5.221 M\Omega$$
 [1.5]

(d)

$$\Delta I_o = \frac{1}{R_o} \Delta V_{C2} = \frac{1}{(5.221\text{M})} (5) = 0.958 \text{ A}$$
[3]

$$\Delta I_o / I_o = 0.958 / 50 = 0.01916 \Rightarrow 1.916\%$$
 [2]

<u>Question 2</u> [30 marks]

The transistors in the circuit shown in Figure 2 have parameters $V_{TN} = 0.4$ V, $V_{TP} = -0.4$ V, $k'_n = 80 \ \mu A/V^2$, $k'_p = 60 \ \mu A/V^2$, and $\lambda_n = \lambda_p = 0$. The transistor width-to-length ratios are $(W/L)_{1,2} = 15$, $(W/L)_3 = 10$, and $(W/L)_4 = 5$.

- (a) **Determine** the I_0 , I_{REF} , and V_{DS2} (sat). [20 marks]
- (b) **Calculate** the values of V_{GS1} , V_{GS3} , and V_{SG4} . [10 marks]

Answer for Question 2

 $V^{+} = 5 V$

 I_{O}

-5 V

re 2

[2]

Q2(b)

Using the equation
$$I_D = K'_n (V_{GS} - V_{TN})^2$$
; [1]

Equation for I_{REF} with respect to M_3 and M_4 :

$$I_{REF} = \frac{k'_{R}}{2} \left(\frac{W}{L} \right)_{3} (V_{GS3} - V_{TN})^{2} = \frac{k'_{R}}{2} \left(\frac{W}{L} \right)_{4} (V_{SG4} + V_{TP})^{2}$$
[2]

$$I_{REF} = \frac{80\mu}{2} (10)_3 (V_{GS3} - 0.4)^2 = \frac{60\mu}{2} (5)_4 (V_{SG4} - 0.4)^2$$
[2]

Solving the equations in V_{GS3} and V_{SG4} terms:

$$V_{SG4} = 1.63299 V_{GS3} - 0.25319 \qquad \dots (1)$$

Equation for I_{REF} with respect to M_3 and $M_{1:}$

$$I_{REF} = \frac{k'_n}{2} \left(\frac{W}{L} \right)_1 (V_{GS1} - V_{TN})^2 = \frac{k'_n}{2} \left(\frac{W}{L} \right)_3 (V_{GS3} - V_{TN})^2$$

$$I_{REF} = \frac{80\mu}{2} (45) (W_{GS1} - V_{TN})^2 = \frac{80\mu}{2} (40) (W_{GS3} - V_{TN})^2$$

$$I_{REF} = \frac{80\mu}{2} (45) (W_{GS1} - V_{TN})^2 = \frac{80\mu}{2} (40) (W_{GS3} - V_{TN})^2$$

$$I_{REF} = \frac{80\mu}{2} (45) (W_{GS1} - V_{TN})^2 = \frac{80\mu}{2} (40) (W_{GS3} - V_{TN})^2$$

$$I_{REF} = \frac{80\mu}{2} (45) (W_{GS1} - V_{TN})^2 = \frac{80\mu}{2} (45) (W_{GS3} - V_{TN})^2$$

$$I_{REF} = \frac{80\mu}{2} (45) (W_{GS1} - V_{TN})^2 = \frac{80\mu}{2} (45) (W_{GS3} - V_{TN})^2$$

$$I_{REF} = \frac{80\mu}{2} (45) (W_{GS1} - V_{TN})^2 = \frac{80\mu}{2} (45) (W_{GS3} - V_{TN})^2$$

$$I_{REF} = \frac{80\mu}{2} (45) (W_{GS3} - V_{TN})^2 = \frac{80\mu}{2} (45) (W_{GS3} - V_{TN})^2$$

$$I_{REF} = \frac{-1}{2} (15)_3 (V_{G53} - 0.4)^2 = \frac{-1}{2} (10)_3 (V_{G53} - 0.4)^2$$
[2]

$$V_{GS3} = 1.22474 V_{GS1} - 0.08989 \qquad \dots (2) \qquad [2]$$

Using nodal analysis for LHS:

$$V^{+} - V_{SG4} - V_{GS3} - V_{GS1} - V^{-} = 0;$$

$$So, V_{SG4} + V_{GS3} + V_{GS1} = 10 \qquad \dots (3)$$

Substitute (1) into (3),

$$V_{GS3} = 3.89412 - 0.37979V_{GS1} \qquad \dots (4)$$
 [2]

Substitute (4) into (2);

$$V_{GSI} = 2.483 V$$
 [1]

$$V_{GS3} = \underline{2.951 \ V}$$
 [1]

 $V_{SG4} = \underline{4.566 \ V}$ [1]

Answer for Question 2

Q2(a)

Based on the calculations above,

$$I_{REF} = \frac{k_{R}'}{2} \left(\frac{W}{L} \right)_{1} (V_{GE1} - V_{TN})^{2}$$
[2]

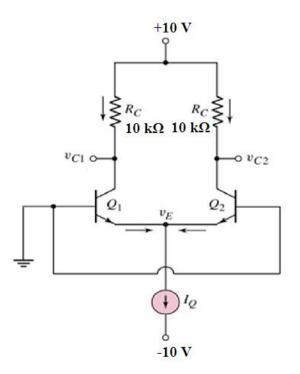
$$I_{REF} = \frac{80\mu}{2} (15)(2.483 - 0.4)^2$$
 [2]

$$= 2.603 mA$$
 [1]

$$I_0 = 2.603 \text{ mA}$$
 [2]

and

$$V_{DS}(sat) = V_{GS2} - V_{TN}$$
^[2]


$$= 2.483 - 0.4 = \underline{2.083 \text{ V}}$$
[1]

<u>Question 3</u> [40 marks]

(a) Figure 3a shows a circuit diagram for a BJT differential amplifier (diff-amp). Study the circuit diagram carefully. Transistor parameters are: $\beta = \infty$ (neglect base current), $V_A = \infty$, and $V_{BE}(\text{on}) = 0.7$ V. For the circuit also, voltages measured at v_{C1} and v_{C2} are 4.5 V. Calculate the value of I_Q and v_{CE2} .

[10 marks]

Answer for Question 3(a)

Q3(a)

Given: $v_{C1} = v_{C2} = 4.5$ V

 $10 - I_{C1} R_C = v_{C1} = 4.5 V$ [2]

 $\rightarrow I_{C1} = 0.55 \text{ mA} = I_{C2} \qquad [1]$

$$\rightarrow$$
 $I_Q = I_{C1} + I_{C2} = 1.1 \text{ mA}$ [2]

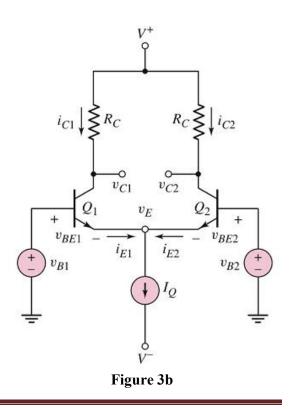
Given: $v_{C2} = 4.5 \text{ V}$

$$v_{CE2} = v_{C2} - v_E$$
 [2]

$$v_E = v_{B2} - V_{BE}(\text{on}) = 0 - 0.7 = -0.7 \text{ V} [2]$$

$$\rightarrow$$
 $v_{CE2} = v_{C2} - v_E = 4.5 - (-0.7) = 5.2 \text{ V} [1]$

Figure 3a


- (b) For a basic BJT differential amplifier shown in Figure 3b, the circuit parameter values are: $V^+ = +10$ V, V = -10 V, $I_Q = 1$ mA, and $R_C = 12$ k Ω . The transistor parameters in the differential pair are $\beta = \infty$ (neglect base currents), $V_A = \infty$, and V_{BE} (on) = 0.7 V. The constant current source in the Figure 3b (that is providing the current I_Q) is implemented using a <u>cascode current source</u>.
 - (i) For all transistors in the **cascode current source**, $V_A = 120$ V and $\beta = 100$. What is the value of the **output resistance** (R_0) looking into the constant current source? [5 marks]
 - (ii) Calculate the differential-mode voltage gain (A_d) taken as one-sided output voltage at v_{C2} . [5 marks]
 - (iii) Calculate the common-mode voltage gain (A_{cm}) using the following formula when all transistors in the cascode current source have $V_A = \infty$ (or that the cascode current source):

$$A_{cm} = \frac{-\beta R_C}{r_{\pi} + 2(1+\beta)R_o}$$
[5 marks]

(iv) It is given that the input voltages for the differential amplifier are $v_{B1} = 210 \times 10^{-6}$ sin $\omega t V$ and $v_{B2} = 190 \times 10^{-6} \sin \omega t V$. Calculate differential-mode input voltage (v_d) , common-mode input voltage (v_{cm}) , and the output voltage (v_o) of the differential amplifier using values of A_d and A_{cm} from (ii) and (iii) above.

[15 marks]

Answer for Question 3(b)

Answer for Question 3 (Cont.)

Q3(b)

(i) $\beta = 100, I_Q = 1 \text{ mA}$ For cascode current source

$$R_0 = (\beta r_{OCasc})$$
[2]

$$r_{OCasc} = V_A / I_Q$$
 [1]
= (120)/(1m) = 120 kΩ [1]

$$R_{O} = (\beta r_{OCasc}) = 100 \text{ x } 120 \text{k}$$

= 12 MΩ [1]

(ii)

$$\begin{array}{ll} A_d &= g_{m2} \, R_C \, / \, 2 & [2] \\ g_{m2} &= (I_Q \, / \, 2) \, / \, V_T & [1] \\ &= 0.5 \, \mathrm{mA} \, / \, 26 \, \mathrm{mV} = 19.23 \, \mathrm{mA/V} & [1] \end{array}$$

$$A_d = (19.23 \text{ m x } 12\text{k}) / 2$$

= 115.38 V/V [1]

(iii)

For cascode current source that has transistors with $V_A = \infty$, $R_O = (\beta V_A / I_Q) = (100 \text{ x} \infty)/(1\text{m}) = \infty$ [2] $A_{cm} = \frac{-\beta R_C}{r_{\pi} + 2(1+\beta)R_o} = \frac{-(\infty)(12k)}{r_{\pi} + 2(1+\infty)(\infty)} = 0$ $\Rightarrow A_{cm} = \{\text{use formula}\} = \text{Value} / \infty = 0$ [3]

(iv)

$$v_d = v_{B1} - v_{B2}$$
[2]
= 210x10⁻⁶ sin $\omega t - 190x10^{-6}$ sin ωt [2]
= 20 x 10⁻⁶ sin ωt (V) [1]

$$v_{cm} = (v_{B1} + v_{B2}) / 2 \qquad [2]= (210x10^{-6} \sin \omega t + 190x10^{-6} \sin \omega t) / 2 \qquad [2]= 200 x 10^{-6} \sin \omega t (V) \qquad [1]$$

$$v_o = A_d \ge v_d + A_{cm} \ge v_{cm}$$
[2]
= (115.38)(20 \times 10^{-6} \sin \omega t) + (0)(200 \times 10^{-6} \sin \omega t) [2]
= 2307.6 \times 10^{-6} \sin \omega t \text{ V} [1]