Name:

Student ID Number:

Section:

Table Number:

Lecturer: Dr Azni Wati/ Dr Jamaludin/

Dr Jehana Ermy

College of Engineering

Department of Electronics and Communication Engineering

Test 2

SEMESTER 2, ACADEMIC YEAR 2014/2015

Subject Code	•	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	:	17 January 2015
Time Allowed	:	1 hour 45 minutes

Instructions to the candidates:

- 1. Write your Name, Student ID Number, Section, and Table number. Indicate your Lecturer.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.
- 5. For all calculations, use $V_T = 26$ mV when necessary.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question No.	1	2	3	Total
Marks				

<u>Question 1</u> [40 marks]

The circuit in **Figure 1** has a pair of npn bipolar transistors as input devices and three-pnp-bipolartransistor circuit connected as an active load. The differential amplifier circuit is biased with a constant current source $I_Q = 0.2$ mA that has and output resistance $R_{OCS} = 50$ MQ. The transistor parameters are: $\beta = 100$, $V_{A1} = V_{A2} = 100$ V, $V_{A3} = V_{A4} = 60$ V, and $V_{A5} = \infty$.

- (a) **Calculate** I_0 such that the dc currents in the differential amplifier are **balanced**, that is $I_1 = I_2 = I_3 = I_4$. [10 marks]
- (b) **Calculate** the open-circuit differential-mode voltage gain A_d . [15 marks]
- (c) **Determine** R_L such that the differential-mode voltage gain is reduced to 90% of its opencircuit value. [8 marks]
- (d) **Design** <u>a better active load circuit</u> that can replace the active load in **Figure 1**. **Discuss** why your design is better than the circuit in **Figure 1**. [7 marks]

Answer for Question 1

Answer	for	Question	1	

(a)	$I_{O} = I_{F}$ $I_{B5} = I_{F}$ $= (I)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	urrents in Figure 1
(b)	$I_{C2} = =$ = (1)	$I_{E}/(1+)$ $I_{Q}/[2(1+)]$ $I_{00}(0.2m)/2(101) = 0.0990 \text{ mA}$	[1] [1] [1]
		$V_{A2}/I_{C2} = 100/0.0990 \text{ m} = 1.01 \text{ M}$ á $V_{A4}/I_{C4} = 60/0.0990 \text{ m} = 606.1 \text{ k}$ á $v_{O4} = 1.01 \text{ M}$ 606.1k = 378.8 ká	[3] [2] [2]
	$g_m \!= I_{C2} / V_T$	= (0.0990 m)/(0.026) = 3.808 mA/V	[2]
	$A_d = g_m(R_C)$	a) = (3.808 m)(378.8 k) = 1442	[3]
(c)	New R _{ON}	$= R_0 R_L$ $= R_0 R_1 / (R_0 + R_1)$	[2]
	A_{vN}	=(90%)(1442)=1298	[1]
	Thus 1298 1298(R_0 + F_0	$g_{m}(R_{ON}) = [g_{m}R_{O}R_{L}]/(R_{O}+R_{L})$ $R_{L}) = 1442R_{L}$ $(298 R_{O})/(1442, 1298)$	[2]
	$\mathbf{R}_{\mathrm{L}} = (1)$	(298)(378.8k)/144 = 3414 ká	[3]
(d)	Use cascod Draw the c OR	le current source as active load ircuit incorporated in diff-amp	[2] [1]
	Use wilson Advantage effect when	current source as active load Increases output resistance of the dif I load is connected because output res is at least 10X larger than that in the	f-amp, help reduces the loading istance of cascode configuration is circuit in Figure 1
	This larger the diff-am	output resistance definitely increase t p.	he differential mode voltage gain of [2]
	Disadvanta	ge: The dc level shifts at the output no	eed to be corrected. [1]
	NOTE: Par justification	rt (d) can have any reasonable and log n.	ical answer provide the

<u>Question 2</u> [30 marks]

A Class-B output stage, with a complementary pair transistors, as in Figure 2 has $V_{CC} = \pm 10$ V, $V_{BE}(\text{on}) = 0.6$ V, and $R_L = 100 \Omega$. The output signal voltage is $v_0 = 10 \sin \omega t$ V. The average power supplied by V^+ and V to a Class-B output stage is given as $2V_{CC}[Vp/(\pi R_L)]$.

- (a) **Determine** the input voltage, V_I , to ensure that $V_O = 0$. Sketch the voltage transfer characteristics of the output stage. [5 marks]
- (b) **Describe** the operation of a *complementary push-pull* output stage based on Figure 2. [3 marks]
- (c) Calculate the average power to the load, *P*_L. [6 marks]
 (d) Calculate the average power dissipated in each transistor. [6 marks]
 (e) Determine the conversion efficiency, *η*, of the output stage. [10 marks]

Answer for Question 2

Figure 2

Answer for Question 2

(a) The cut-in voltage is 0.6 V, so, $-0.6 \le V_I \le 0.6 V$ [2]. The voltage transfer characteristics of the output stage is: [5 marks]

- (b) Q_n conducts during the positive half of the input cycle [1] and Q_p conducts during the negative half-cycle [1]. Only one transistor conducts at one time [3 marks] [1].
- (c) Calculate the average power to the load, \overline{P}_{L} .

$$\overline{P_L} - \frac{1}{2} \frac{V_p^2}{R_L} \quad [2]$$

$$\overline{P_L} = \frac{1}{2} \frac{(10)^2}{100} \quad [2]$$

$$P_L = 0.5 \text{ W} \quad [2]$$

(d) Calculate the average power dissipated in each transistor. For $0 \ddot{O}\omega t \ddot{O}\pi$;

$$\overline{P_Q} = \frac{V_{CC}V_p}{\pi R_L} - \frac{V_p^2}{4R_L} [2]$$

$$\overline{P_Q} = \frac{(10)(10)}{100\pi} - \frac{10^2}{4(100)} [2]$$

$$\overline{P_Q} = 0.06826 \text{ W} [2]$$

(e) Determine the conversion efficiency, η , of the output stage.

$$\overline{P_S} = 2V_{CC} \left(\frac{V_p}{\pi R_L}\right) [2]$$
$$\overline{P_S} = 2(10) \left(\frac{10}{100\pi}\right) [2]$$
$$= \underline{0.6365 \text{ W} [2]}$$

Hence,

$$\eta = \frac{\overline{p_L}}{\overline{p_S}} \times 100\% [2]$$

= 0.5/0.6365 × 100% = 78.5% [2]

Page 5

[10 marks]

[6 marks]

[6 marks]

<u>Question 3</u> [30 marks]

A simplified bipolar op-amp is designed as shown in Figure 3. Note that biasing for amplifiers in the circuit is provided by two-transistor current mirrors. Study the figure carefully. Neglect base currents. Assume parameters for all transistors are: $V_{BE}(\mathbf{on}) = 0.7$ V, $\beta = 100$, and $V_A = \infty$.

- (a) Referring to Figure 3, given $I_Q = 1$ mA. Find I_{C2} , I_{R4} , I_{R5} , v_{02} , and v_{03} for $v_1 = v_2 = 0$ V. [15 marks]
- (b) With small-signal analysis values for A_{d1} , $r_{\pi 3}$, R_{i2} , and A_2 can be found using the following formula:

$$A_{d1} = \left(\frac{V_{o2}}{v_d}\right) = \frac{g_{m2}}{2} \left(R_C \| R_{i2}\right)$$
$$r_{\pi 3} \cong \beta r_{\pi 4}$$
$$R_{i2} = r_{\pi 3} + (1 + \beta) r_{\pi 4}$$
$$A_2 \cong \frac{I_{R4}}{2V_T} \left(R_5\right)$$

Calculate A_{d1} , A_2 , and the total overall small-signal voltage gain, A_d . [15 marks]

Answer for Question 3

(a)

Given
$$I_Q = 1 \text{ mA}$$

 $I_{C2} = I_Q / 2 = 0.5 \text{ mA}$ [3]
 $v_{02} = V^+ - I_{C2} R_C = 10 - (0.5 \text{m})(10 \text{k}) = 5 \text{ V}$ [3]
 $I_{R4} = (v_{02} - 2 V_{BE}(\text{on})) / (R_4)$
 $= (5 - 1.4) / (11.5 \text{k}) = 0.313 \text{ mA}$ [3]
 $I_{R5} \approx I_{R4}$ (neglecting base currents) = 0.313 mA [3]

$$v_{O3} = V^+ - I_{R5}R_5 = 10 - (0.313 \text{m})(5\text{k}) = 8.44 \text{ V}$$
 [3]

(b)

Using
$$I_{C2} = 0.5 \text{ mA}, I_{R4} = 0.313 \text{ mA}$$
:
 $A_{d1} = (g_m / 2)(R_C || R_{i2})$
 $g_{m2} = I_{C2} / V_T = (0.5 \text{mA})/(26 \text{mV}) = 19.23 \text{ mA/V}$ [2]
 $r_{\pi 4} = \beta V_T / I_{R4} = (100 \text{x} 26 \text{m})/(0.313 \text{m}) = 8.306 \text{ k}\Omega$ [2]
 $r_{\pi 3} \approx \beta r_{\pi 4} = 830.6 \text{ k}\Omega$ [2]
 $R_{i2} = r_{\pi 3} + (1 + \beta) r_{\pi 4}$
 $= 830.6 \text{k} + (101)(8.306 \text{k}) = 1669.5 \text{ k}\Omega$ [2]
 $A_{d1} = (19.23 \text{ m/2})(10 \text{k} || 1669.5 \text{k}) = 95.58$ [2]
 $A_2 \approx (I_{R4} / 2V_T) R_5 = (0.313 \text{ m}/(2 \text{x} 26 \text{m}))(5 \text{k}) = 30$ [2]
 $A_3 \approx 1$ [1]
 $A_d = A_{d1} A_2 A_3 = 95.58 \text{ x} 30 \text{ x} 1 = 2867$ [2]