

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 1 2015 / 2016

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **FIVE** (5) questions in **NINE** (9) pages.
- 2. Answer **ALL** questions.
- 3. Write **all** answers in the answer booklet provided. **Use pen** to write your answer.
- 4. Write answer to different question on **a new page**.

THIS QUESTION PAPER CONSISTS OF NINE **(9)** *PRINTED PAGES INCLUDING THIS COVER PAGE.*

Question 1 [20 marks]

Figure 1 has the transistor parameters of β = 180, $V_{BE}(\text{on})$ = 0.7 V (for all transistors **EXCLUDING** Q_4), $V_A = \infty$ for Q_1 and Q_2 , and $V_A = 100$ V for Q_3 and Q_4 .

Figure 1

- (a) **Calculate** R_1 and R_2 as such $I_1 = 0.5$ mA and $I_Q = 140 \mu\text{A}$. [5 marks]
- (b) **Determine** the common-mode input resistance, *Ricm*, of the differential amplifier.

[10 marks]

(c) **Find** the common-mode voltage gain, A_{cm} , of the differential amplifier for $R_C = 50 \text{ k}\Omega$. The equation is given as $\overline{a} = \overline{a} \overline{R}$ [5 marks] $A_{cm} = \frac{-g_m R}{2(1+R)}$ $m^{11}C$

$$
{cm}=\frac{-g{m}R_{C}}{1+\frac{2(1+\beta)R_{o}}{r_{\pi}}}
$$

Q1 Answer

(a) Calculate R_1 and R_2 as such $I_1 = 0.5$ mA and $I_Q = 140 \mu A$. Using the KVL rule, [5 marks]

$$
I_1 = \frac{10 - 0.7 - (-10)}{R_1} = 0.5m \,[1.5]
$$

$$
R_1 = \frac{38.60 \,\mathrm{k}}{1}
$$

For the Widlar & current source,

$$
I_{O}R_{E}=V_{\rm T}\ln\left(\frac{t_{KBF}}{t_{O}}\right)[1.5]
$$

Substituting for *R2*,

$$
I_0 R_E = V_T \ln \left(\frac{I_{REF}}{I_0}\right)
$$

\n
$$
R_E = \frac{V_T}{I_0} \ln \left(\frac{I_{REF}}{I_0}\right)
$$

\n
$$
R_Z = \frac{V_T}{I_0} \ln \left(\frac{I_{REF}}{I_0}\right) = \frac{0.026}{0.14} \ln \left(\frac{0.5m}{0.14m}\right) = 236 \Omega [1]
$$

(b) Determine the common-mode input resistance, *Ricm*.

[10 marks]

$$
R_{icm} \approx (1+\beta)R_o
$$
 [2]

For Widlargs current source, $R_0 - r_{04} (1 + g_{m4} R_E^t)$ [2]

$$
g_{m4} = \frac{lq}{v_T} = \frac{0.14m}{0.026} = 5.385 \ mA/V \ [1]
$$
\n
$$
r_{m4} = \frac{\beta v_T}{l_Q} = \frac{(180)(0.026)}{0.14m} = 33.40 \ k\Omega \ [1]
$$
\n
$$
R_E' = r_{m4} || R_2 = 0.234 \ k\Omega \ [1]
$$
\n
$$
r_{04} = \frac{v_A}{l_Q} = \frac{100}{0.14m} = 714 \ k\Omega \ [1]
$$

Substituting into the main equation,

$$
R_o = 714k(1 + (5.385)(0.234k)) = 1614 k\Omega [1]
$$

$$
\therefore R_{lcm} = (180 + 1)1614k \approx 292M\Omega [1]
$$

(c) Find the common-mode voltage gain, A_{cm} , for $R_C = 50 \text{ k}\Omega$. [5 marks]

$$
Given A_{cm} = \frac{-g_m R_c}{1 + \frac{2(1+\beta)R_o}{r_{\pi}}}
$$

$$
g_{m1} = \frac{l_Q}{v_T} = \frac{0.14m/2}{0.026} = \frac{0.07m}{0.026} = 2.692 \text{ mA/V} \text{ [2]}
$$

\n
$$
r_{m1} = \frac{\beta v_T}{l_Q} = \frac{(180)(0.026)}{0.14m/2} = 66.86 \text{ k}\Omega \text{ [2]}
$$

\nSubstituting these into the equation,
\n
$$
A_{cm} = \frac{-(2.692m)(60k)}{1 + \frac{2(1 + 180)(1648k)}{66.86k}} = -0.0154 \text{ [1]}
$$

Question 2 [20 marks]

For the differential amplifier **with 2-transistor active load** circuits in **Figure 2** it is given that the circuit parameters are: $V^+=10$ V, $V^-=-10$ V, and $I_Q=0.1$ mA.

NMOS transistor parameters are: $V_{TN} = 1$ **V**, $k'_{n} = 80 \mu A/V^{2}$, and $\lambda_{n} = 0.01$ **V**⁻¹; and the **PMOS** transistor parameters are: $V_{TP} = -1 \text{ V}$, $k_p^* = 40 \mu\text{A/V}^2$, and $\lambda_p = 0.015 \text{ V}^{-1}$.

(a) **Find** the differential gain A_d , given $(W/L)_1 = (W/L)_2 = 2$ and $(W/L)_3 = (W/L)_4 = 4$.

[5 marks]

- (b) **Redesign** the differential pair M_1 and M_2 if the value of the gain is **to be increased 5 times** than that calculated in **part (a)**. [6 marks]
- (c) It is given that the **constant current source** I_Q is implemented with a two-transistor current source with $(W/L) = 5$ for the transistors. **Sketch** the differential amplifier circuit **together** with the two-transistor current source. Then, **calculate** the value of the minimum common-mode input voltage, $V_{cm}(\text{min})$ of the differential pair. [9 marks]

Q2 Answer

Question 2(a) [5 marks]
\n
$$
A_d = g_{m1}(r_{o2}||r_{o4})
$$
 [2]
\n $I_{D1} = I_Q/2 = I_{D2} = I_{D3} = I_{D4} = 0.1mA/2 = 0.05mA$
\n $g_{m1} = 2\sqrt{K_n I_{D1}} = 2\sqrt{\frac{k_n}{2} \left(\frac{W}{L}\right) I_{D1}} = 2\sqrt{\frac{80}{2} \left(2\right)(0.05m)} = 0.1265mA/V$ [1]
\n $r_{o2} = \frac{1}{\lambda_n I_{D2}} = \frac{1}{(0.01)(0.05m)} = 2M\Omega$ [0.5]
\n $r_{o4} = \frac{1}{\lambda_p I_{D4}} = \frac{1}{(0.015)(0.05m)} = 1.33M\Omega$ [0.5]
\n $A_d = (0.1265m)(2M || 1.33M) = 101V/V$ [1]

Question 2(b) [6 marks]
\n
$$
A_{dNew} = 5 \times A_d = 5 \times 101 = 505V/V
$$
 [1]
\n $A_{dNew} = g_{m1New} (r_{o2} || r_{o4})$
\n $505 = g_{m1New} (0.79M)$ [2]
\n $g_{m1New} = 0.6395mA/V$ [1]
\n $g_{m1New} = 2\sqrt{\frac{k_n}{2} \left(\frac{W}{L}\right)_{1New}} I_{D1} = 2\sqrt{\left(\frac{80}{2} \right) \left(\frac{W}{L}\right)_{1New}} (0.05m)$
\n $0.6395m = \sqrt{\left(\frac{W}{L}\right)_{1New}} (8.94 \times 10^{-5})$ [1]
\n $\left(\frac{W}{L}\right)_{1New} = 51.1$ [1]

Question 2(c) [9 marks]

Diagram [1]

$$
Q2(c)
$$

 $(V_{GS1} - V_{TN})$ $(2)(V_{GS1}-1)$ $(V_{GSS} - V_{TN})$ $(5)(V_{GSS} - 1)$ $V_{DS}(sat) = V_{GS5} - V_{TN} = 1.707 - 1 = 0.707V$ [1] \rightarrow V_{GSS} = 1.707*V* [2] 2 $0.1m = \left(\frac{80}{2}\right)(5)(V_{csc} - 1)^2$ 2 $;V_{D5}(sat)$ \rightarrow $V_{GS1} = 1.791V$ [2] 2 $0.05m = \left(\frac{80}{2}\right)(2)(V_{GS1} - 1)^2$ 2 $;V_{GS1}$ $V_{cm}(\text{min}) = V_{GS1} + V_{DS}(sat) + V^{-}$ [2] $m = \left(\frac{80}{2}\right) (5) (V_{GSS} -$ 2 5 5 ' $S_5 = I_Q = \frac{K_n}{2} \left| \frac{V}{I} \right| V_{GSS} - V_Q$ $m = \left(\frac{80}{2}\right) (2) (V_{GS1} -$ 2 1 1 ' $v_1 = \frac{\kappa_n}{2} \left| \frac{V}{I} \right| \left| \left| V_{GS1} - V \right| \right|$ *L* $I_{DS} = I_Q = \left(\frac{k_n}{2}\right)\left(\frac{W}{I}\right)\left(V_{GSS} - V_{TN}\right)$ *L* $I_{D1} = \left(\frac{k_n}{2}\right)\left(\frac{W}{I}\right)\left(V_{GSI} - V_{TN}\right)$ *n* $I_{D5} = I_{Q} = \left(\frac{k_{n}}{2}\right)\left(\frac{W}{L}\right)_{5}\left(V_{GSS}$ *n* $L_{D1} = \left(\frac{k_n}{2}\right)\left(\frac{W}{L}\right)_{1} \left(V_{GS1} - \right)$ \setminus $=$ \setminus Ê $\sqrt{ }$ $\overline{}$ ˆ Á Á \setminus $= I_{\Omega} = \left($ \setminus $=$ \setminus Ê $\sqrt{ }$ $\overline{}$ ˆ Á Á \setminus $=$

 V_{cm} (min) = 1.791 + 0.707 + (-10) = -7.5V [1]

Question 3 [20 marks]

- (a) Please **refer** to the multistage amplifier circuit shown in **Figure 3**. **Calculate** the smallsignal input impedance of the gain stage indicated by R_i ². It is given that current $I_{R4} = 0.4$ **mA**, and for the transistors β = **200** and V_A = **100 V**. [4 marks]
- (b) Refer to **Figure 3** also. If the gain of the differential amplifier: $A_{d1} = v_{02}/v_d$, the gain of the gain stage: $A_{\nu2} = v_{\nu3}/v_{\nu2}$, and the gain of the output stage: $A_{\nu2} = v_{\nu}/v_{\nu3}$,
	- (i) Express A_{vtotal} , i.e. the overall gain of the op-amp circuit in terms of A_{d1} , $A_{\nu2}$ and $A_{\nu 3}$. [2 marks]
	- (ii) How does value of \mathbf{R}_{i2} calculated in **part (a)** affects the gain A_{d1} . [2 marks]

Figure 3

(c) **Figure 4** shows the **Class-AB** output stage circuit. Assume that $V_{CC} = 10 \text{ V}$, $V_{BB} = 1.35 \text{ V}$, and $R_L = 1$ **k** Ω . Transistors Q_n and Q_p are matched, with $I_s = 4 \times 10^{-15}$ **A**. It is given that output voltage $v_0 = -8$ V. Calculate the voltages v_{BEN} , v_{EBP} , and input voltage v_I , as well as currents i_L , i_{Cn} , and i_{Cp} . Then **calculate** the power dissipated in the transistors P_{Qn} and P_{Qp} .

[12 marks]

Figure 4

Q3 Answer

Question 3(a) [4 marks]
\n*R_{i2} = r_{π3} + (1 + β)r_{π4} [1.5]
\n*I_{E4} = I_{R4} = 0.4 mA*
\n*I_{C4} =
$$
\frac{\beta}{1 + \beta}
$$
 I_{E4} = $\frac{200}{201}(0.4m) = 0.398mA$
\n*r_{π4} = $\frac{\beta V_T}{I_{C4}} = \frac{(200)(26m)}{0.398m} = 13.07kΩ$ [0.5]
\n[*r_{π4} = 13kΩ* with *I_{C4} ≅ I_{E4}* is also okay]
\n*I_{E3} = I_{B4} = $\frac{I_{E4}}{1 + \beta}$*
\n*I_{C3} = $\frac{\beta}{1 + \beta}$ *I_{E3} = $\frac{\beta}{(1 + \beta)} \frac{I_{E4}}{(1 + \beta)} = \frac{200}{(201)^2}(0.4m) = 1.98 \times 10^{-6} A$ [0.5]
\n*r_{π3} = $\frac{\beta V_T}{I_{C3}} = \frac{(200)(26m)}{1.98 \times 10^{-6}} = 2.63MΩ$ [0.5]
\n∴ *R_{i2} = (2.63M) + (201)(13.07k) = 5.26MΩ* [1]******

Question 3(b) [4 marks] (i) $A_{vTOTAL} = V_0/V_d = A_{d1} x A_{v2} x A_{v3}$ [2]

(ii) The value of Ri2 is very large, hence the input impedance of the $2nd$ gain stage will not load down or decrease the gain of the $1st$ stage, Ad1. I.e. the loading effect of the $2nd$ stage onto the $1st$ stage can be neglected. [2]

Question 3(c) [12 marks]

For $v_0 = -8$ V, i_L = V_O / R_L = $(-8V)/(1 k\Omega)$ = -8 mA [1]

Therefore, Q_p is conducting and Q_n is OFF.

Approximation:

$$
i_{Cp} \approx |i_L| = 8 \text{ mA}
$$
 [1]
\n
$$
v_{EBp} = V_T \ln(i_{Cp} / I_S)
$$

\n
$$
= (0.026) \ln(8\text{m} / 4 \times 10^{-15}) = 0.7364 \text{ V}
$$
 [1]
\n
$$
v_{BEn} = V_{BB} - v_{EBp} = 1.35 - 0.7364 = 0.6136 \text{ V}
$$
 [1]
\n
$$
V_{In} = V_O + V_{BB}/2 - v_{EBp} = -8 + 1.35/2 - 0.7364 = -8.06 \text{ V}
$$
 [1]
\n
$$
i_{Cn} = I_S \exp(V_{BEn} / V_T)
$$

\n
$$
= (4 \times 10^{-15}) \exp(0.6136 / 0.026) = 7.102 \times 10^{-5} \text{ A}
$$
 [1]
\n
$$
i_{Cn} = i_{Cp} + i_L
$$
 [1]
\n
$$
i_{Cp} = i_{Cn} - i_L
$$
 Recalculate i_{Cp}
\n
$$
= 7.102 \times 10^{-5} - (-8 \text{ m}) = 8.071 \text{ mA}
$$
 [1]

For *Qn***:**

$$
V_{CEn} = V_{CC} - V_0 = 10 - (-8) = 18 \text{ V}
$$
 [0.5]

$$
P_{Qn} = i_{Cn} V_{CEn} = (7.102 \times 10^{-5})(18) = 1.278 \text{ mW} \qquad [0.5]
$$

[1]

For Q_p : V_{ECp} = V_0 – $(-V_{CC})$ = (-8) – (-10) = 2 V **[0.5]** P_{Qp} = i_{Cp} *v_{ECp}* = (8.071m)(2) = 16.14 mW [0.5] **[1]**

Question 4 [20 marks]

Consider a **standard 741 operational amplifier** (op-amp) circuit as shown in **Figure 5**. Study Figure 5 carefully and observe the output stage of the operational amplifier. Assume load resistance connected to the <u>Output of the 741 op-amp</u> is $R_L = 2$ k Ω .

The op-amp is supplied by \pm 5 V DC voltages. The transistors have $\beta_n = 200$, $\beta_p = 50$, $V_{AN} = V_{AP}$ $= 50 \text{ V}$, $V_{BE}(\text{on}) = V_{EB}(\text{on}) = 0.6 \text{ V}$, and the reverse saturation currents $I_{S18} = I_{S19} = 2 \times 10^{-14} \text{ A}$, and $I_{S14} = I_{S20} = 5 \times 10^{-14}$ A.

From DC analysis, bias currents <u>for selected transistors</u> are $I_{C13A} = 0.125$ mA, $I_{C13B} = 0.375$ **mA**, $I_{C19} = 0.113$ mA. Determine the output stage quiescent currents I_{C14} and I_{C20} . Analyse the **changes** in output current i_{C20} if $i_{C14} = 1$ mA. Please state the class of this output stage.

This output stage includes a number of transistors that are $\tilde{\text{co}}$ ffö during the normal operation. By providing example, **identify and discuss** the functional operation of these transistors when they are **<u>oono.</u>** [20 marks]

Figure 5

Q4 Answer [20 marks]

$$
V_{BE19} = V_T \ln (I_{C19}/I_{S19}) = 0.026 \ln (0.113 \text{m}/2\text{E} - 14) = 0.58383 \text{ V}
$$
 [1.5]
\n
$$
I_{C18} = I_{B19} + (I_{R10}) = (I_{C19}/) + (V_{BE19}/R_{10})
$$

\n
$$
= (0.113 \text{m}/200) + (0.58383/50 \text{ k}) = 12.242 \mu \text{A}
$$
 [3]
\n
$$
V_{BE18} = V_T \ln (I_{C18}/I_{S18}) = 0.026 \ln (12.242 \mu/2\text{E} - 14) = 0.52604 \text{ V}
$$
 [1.5]
\n
$$
V_{BB} = V_{BE18} + V_{BE19} = 0.52604 + 0.58383 = 1.1099 \text{ V}
$$
 [1.5]
\n
$$
V_{BE14} = V_{BE20} = V_{BB}/2 = 1.1099/2 = 0.5549 \text{ V}
$$
 [1]
\n
$$
I_{C14} = I_{C20} = I_S \exp [V_{BE}/V_T] = (5E-14) \exp[0.5549/0.026] = 92.99 \mu \text{A}
$$
 [2.5]

Keywords:

short circuit protection circuitry; when R_L is shorted 6 large current in Q_{14} during positive input cycle; R_6 and Q_{15} limits short circuit current in Q_{14} [5]

OR

short circuit protection circuitry; when R_L is shorted 6 large current in Q_{20} during negative input cycle; R_7 , Q_{21} and Q_{24} limits short circuit current in Q_{20} .

Question 5 [20 marks]

- (a) With an **input resistor** (R_1) of 50 k Ω , design an amplifier using op-amp with a **closedloop gain** of **25 V/V. Draw and label clearly** your circuit design. [4 marks]
- (b) Consider the two inverting op-amp circuit connected in cascade as shown in **Figure 6**. Let $R_1 = 25 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 80 \text{ k}\Omega$, and $R_4 = 50 \text{ k}\Omega$. Calculate v_0/v_I for the circuit. [4 marks]

Figure 6

(c) **Figure 7** in the following page shows a design for an **instrumentation amplifier with variable differential voltage gain** using op-amps. In the design, *R***1***POT* is a **potentiometer** (or a variable resistor) used **to provide variable resistance** so that differential voltage gain (A_v) of the instrumentation amplifier can be adjustable. With analysis, it can be shown that output voltage (v_0) for the **difference amplifier** constructed using op-amp A_3 , resistors R_3 , and resistors *R***⁴** is

$$
v_O = \frac{R_4}{R_3} (v_{O2} - v_{O1})
$$

Figure 7

(i) Study Figure 7 carefully. Using same labels for all resistors, voltages and currents given in the **Figure 7**, show that the output voltage $(v₀)$ of the **instrumentation amplifier with variable differential voltage gain** is [8 marks]

$$
v_O = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_{1f} + R_{1POT}} \right) (v_{I2} - v_{I1})
$$

(ii) For the circuit in Figure 7, given that $R_4 = 2 R_3$, $R_2 = 495 \text{ k}\Omega$, $R_{1f} = 10 \text{ k}\Omega$, R_{1POT} is set at 40 ká, $v_{I1} = 0.90$ V, and $v_{I2} = 1.25$ V. Calculate A_v and v_O .

[4 marks]

-END OF QUESTION PAPER-

Q5 Answer

Question 5(a) [4 marks]

$$
A_v = v_0 / v_1 = 1 + (R_2/R_1)
$$
 [1]
25 = 1 + (R₂/50k) $R_2 = 1200$ ká [1]
Drawing: [2]

 $R_1 = 50$ ká, $R_2 = 1200$ ká, correct op-amp symbol, GND, v_O , and v_I

Question 5(b) [4 marks]
\n
$$
v_O = (-R_4/R_3)v_{O1}
$$
 [1]
\n
$$
v_{O1} = (-R_2/R_1)v_I
$$
 [1]
\n
$$
v_O = (-R_4/R_3)(-R_2/R_1)v_I
$$
 [1]
\n
$$
v_O / v_I = (R_4/R_3)(R_2/R_1)
$$

\n
$$
= [(50k/80k)(100k/25k)] = 2.5 \text{ V/V}
$$
 [1]

Question $5(c)(i)$ [8 marks]

$$
i_1 = \frac{v_{I1} - v_{I2}}{R_{1f} + R_{1POT}} [1]
$$

\n
$$
v_{O1} = v_{I1} + i_1 R_2 = \left(1 + \frac{R_2}{R_{1f} + R_{1POT}}\right) v_{I1} - \frac{R_2}{R_{1f} + R_{1POT}} v_{I2} [2]
$$

\n
$$
v_{O2} = v_{I2} - i_1 R_2 = \left(1 + \frac{R_2}{R_{1f} + R_{1POT}}\right) v_{I2} - \frac{R_2}{R_{1f} + R_{1POT}} v_{I1} [2]
$$

\n
$$
v_O = \frac{R_4}{R_3} (v_{O2} - v_{O1}) [1]
$$

\n
$$
v_O = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_{1f} + R_{1POT}}\right) (v_{I2} - v_{I1}) [2]
$$

Question $5(c)(ii)$ [4 marks]

$$
A_{\nu} = \frac{v_O}{(v_{I2} - v_{I1})} = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_{1f} + R_{1POT}} \right)
$$
 [1]
\n
$$
A_{\nu} = \frac{2R_3}{R_3} \left(1 + \frac{2(495k)}{10k + 40k} \right) = 41.6 \text{ V/V} \qquad [1]
$$

\n
$$
v_O = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_{1f} + R_{1POT}} \right) (v_{I2} - v_{I1}) \qquad [1]
$$

\n
$$
v_O = A_{\nu} (v_{I2} - v_{I1}) = (41.6)(1.25 - 0.90) = 16.224 \text{ V} \qquad [1]
$$

APPENDIX:

A) BASIC FORMULA FOR TRANSISTOR

BJT MOSFET $= I_s e^{v_{EB}/V_T}$; PNP $= I_s e^{v_{BE}/V_T}$; NPN $i_C = I_S e^{v_{EB}/V_T}$ $i_C = I_S e^{v_{BE}/V_T}$

$$
i_C = \beta i_B = \alpha i_E
$$

$$
i_E = i_B + i_C
$$

$$
\alpha = \frac{\beta}{\beta + 1}
$$

;Smallsignal

I

T

CQ

=

g

 $m - \overline{V}$

 $\beta = g_m r_{\pi}$

; N - MOSFET
\n
$$
v_{DS}
$$
(sat) = $v_{GS} - V_{TN}$
\n $i_D = K_n[v_{GS} - V_{TN}]^2$
\n $K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k_n}{2} \cdot \frac{W}{L}$

$$
; \mathbf{P}-\text{MOSFET}
$$

\n
$$
v_{SD}(\text{sat}) = v_{SG} + V_{TP}
$$

\n
$$
i_D = K_p[v_{SG} + V_{TP}]^2
$$

\n
$$
K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k_p}{2} \cdot \frac{W}{L}
$$

$$
r_{\pi} = \frac{\beta V_T}{I_{CQ}}
$$

\n
$$
r_o = \frac{V_A}{I_{CQ}}
$$

\n
$$
V_T = 26 \text{ mV}
$$

\n
$$
r_o \approx \frac{1}{\lambda I_{DQ}}
$$

\n
$$
r_o \approx \frac{1}{\lambda I_{DQ}}
$$

B) HYBRID- EQUIVALENT CIRCUITS $\frac{D}{4}$ **B** V_{gs} I_d \leftrightarrow $g_m V_{gs} \ge r_o$ V_{ds} $\triangleright_{g_m} v_{\pi} \xi_{r_o}$ $V_{\pi} \sum r_{\pi}$ $\overline{\mathbf{r}}$ V_{ce} $\left(\mathrm{E}\right)$ S