

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

SEMESTER 1 2015 / 2016

PROGRAMME	: Bachelor of Electrical & Electronics Engineering (Honours) Bachelor of Electrical Power Engineering (Honours)
SUBJECT CODE	: EEEB273
SUBJECT	: ELECTRONIC ANALYSIS AND DESIGN II
DATE	: September 2015
TIME	: 3 hours

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains **FIVE** (5) questions in **NINE** (9) pages.
- 2. Answer ALL questions.
- 3. Write all answers in the answer booklet provided. Use pen to write your answer.
- 4. Write answer to different question on **a new page**.

THIS QUESTION PAPER CONSISTS OF NINE (9) PRINTED PAGES INCLUDING THIS COVER PAGE.

Question 1 [20 marks]

Figure 1 has the transistor parameters of $\beta = 180$, $V_{BE}(\text{on}) = 0.7$ V (for all transistors EXCLUDING Q_4), $V_A = \infty$ for Q_1 and Q_2 , and $V_A = 100$ V for Q_3 and Q_4 .

Figure 1

- (a) Calculate R_1 and R_2 as such $I_1 = 0.5$ mA and $I_Q = 140 \mu$ A. [5 marks]
- (b) **Determine** the common-mode input resistance, R_{icm} , of the differential amplifier. [10 marks]
- (c) Find the common-mode voltage gain, A_{cm} , of the differential amplifier for $R_c = 50 \text{ k}\Omega$. The equation is given as $A_{cm} = \frac{-g_m R_C}{2(1+R)P}$ [5 marks]

$$cm = \frac{-g_m R_C}{1 + \frac{2(1+\beta)R_o}{r_{\pi}}}$$

Q1 Answer

(a) Calculate R_1 and R_2 as such $I_1 = 0.5$ mA and $I_Q = 140 \mu$ A. [5 marks] Using the KVL rule,

$$I_1 = \frac{10 - 0.7 - (-10)}{R_1} = 0.5m \ [1.5]$$
$$R_1 = \frac{38.60 \text{ k}}{1} \ [1]$$

For the Widlarøs current source,

$$I_0 R_E = V_T \ln \left(\frac{I_{REF}}{I_0}\right) [1.5]$$

Substituting for R_2 ,

$$I_{O}R_{E} = V_{T}\ln\left(\frac{I_{REF}}{I_{O}}\right)$$

$$R_{E} = \frac{V_{T}}{I_{O}}\ln\left(\frac{I_{REF}}{I_{O}}\right)$$

$$R_{2} = \frac{V_{T}}{I_{O}}\ln\left(\frac{I_{REF}}{I_{O}}\right) = \frac{0.026}{0.14}\ln\left(\frac{0.5m}{0.14m}\right) = 236 \Omega [1]$$

(b) Determine the common-mode input resistance, R_{icm} .

[10 marks]

$$R_{icm} \approx (1+\beta)R_0$$
 [2]

For Widlarøs current source, $R_0 - r_{04} (1 + g_{m4} R'_E)$ [2]

$$g_{m4} = \frac{I_Q}{v_T} = \frac{0.14m}{0.026} = 5.385 \ mA/V \ [1]$$

$$r_{\pi 4} = \frac{\beta v_T}{I_Q} = \frac{(180)(0.026)}{0.14m} = 33.40 \ k\Omega \ [1]$$

$$R'_E = r_{\pi 4} ||R_2 = 0.234 \ k\Omega \ [1]$$

$$r_{04} = \frac{V_A}{I_Q} = \frac{100}{0.14m} = 714 \ k\Omega \ [1]$$

Substituting into the main equation,

$$R_o = 714k(1 + (5.385)(0.234k)) = 1614 k\Omega [1]$$

$$\therefore R_{tom} = (180 + 1)1614k \approx 292M\Omega [1]$$

(c) Find the common-mode voltage gain, A_{cm} , for $R_C = 50 \text{ k}\Omega$.

[5 marks]

$$Given A_{cm} = \frac{-g_m R_c}{1 + \frac{2(1+\beta)R_o}{r_n}}$$

$$g_{m1} = \frac{I_Q}{v_T} = \frac{0.14m/2}{0.026} = \frac{0.07m}{0.026} = 2.692 \ mA/V \ [2]$$

$$r_{\pi 1} = \frac{\beta v_T}{I_Q} = \frac{(180)(0.026)}{0.14m/2} = 66.86 \ k\Omega \ [2]$$

Substituting these into the equation,

$$A_{cm} = \frac{-(2.692m)(50k)}{1+\frac{2(1+180)(180k)}{66.86k}} = -0.0154 \ [1]$$

Question 2 [20 marks]

For the differential amplifier with 2-transistor active load circuits in Figure 2 it is given that the circuit parameters are: $V^+ = 10$ V, $V^- = -10$ V, and $I_Q = 0.1$ mA.

NMOS transistor parameters are: $V_{TN} = 1$ V, $k'_n = 80 \ \mu A/V^2$, and $\lambda_n = 0.01$ V⁻¹; and the PMOS transistor parameters are: $V_{TP} = -1$ V, $k'_p = 40 \ \mu A/V^2$, and $\lambda_p = 0.015$ V⁻¹.

(a) Find the differential gain A_d , given $(W/L)_1 = (W/L)_2 = 2$ and $(W/L)_3 = (W/L)_4 = 4$.

[5 marks]

- (b) Redesign the differential pair M_1 and M_2 if the value of the gain is to be increased 5 times than that calculated in part (a). [6 marks]
- (c) It is given that the constant current source I_Q is implemented with a two-transistor current source with (W/L) = 5 for the transistors. Sketch the differential amplifier circuit together with the two-transistor current source. Then, calculate the value of the minimum common-mode input voltage, $V_{cm}(\min)$ of the differential pair. [9 marks]

Q2 Answer

Question 2(a) [5 marks]

$$A_{d} = g_{m1}(r_{o2} || r_{o4}) [2]$$

$$I_{D1} = I_{Q}/2 = I_{D2} = I_{D3} = I_{D4} = 0.1 mA/2 = 0.05 mA$$

$$g_{m1} = 2\sqrt{K_{n}I_{D1}} = 2\sqrt{\left(\frac{k_{n}}{2}\right)\left(\frac{W}{L}\right)_{1}I_{D1}} = 2\sqrt{\left(\frac{80}{2}\right)(2)(0.05m)} = 0.1265 mA/V \quad [1]$$

$$r_{o2} = \frac{1}{\lambda_{n}I_{D2}} = \frac{1}{(0.01)(0.05m)} = 2M\Omega \quad [0.5]$$

$$r_{o4} = \frac{1}{\lambda_{p}I_{D4}} = \frac{1}{(0.015)(0.05m)} = 1.33M\Omega \quad [0.5]$$

$$A_{d} = (0.1265m)(2M || 1.33M) = 101V/V \quad [1]$$

Question 2(b) [6 marks]

$$A_{dNew} = 5 \times A_d = 5 \times 101 = 505V/V$$
 [1]
 $A_{dNew} = g_{m1New} (r_{o2} || r_{o4})$
 $505 = g_{m1New} (0.79M)$ [2]
 $g_{m1New} = 0.6395mA/V$ [1]
 $g_{m1New} = 2\sqrt{\left(\frac{k'_n}{2}\right)\left(\frac{W}{L}\right)_{1New}} I_{D1}} = 2\sqrt{\left(\frac{80}{2}\right)\left(\frac{W}{L}\right)_{1New}} (0.05m)$
 $0.6395m = \sqrt{\left(\frac{W}{L}\right)_{1New}} (8.94 \times 10^{-5})$ [1]
 $\left(\frac{W}{L}\right)_{1New}} = 51.1$ [1]

Question 2(c) [9 marks]

 $V_{cm}(\min) = 1.791 + 0.707 + (-10) = -7.5V$ [1]

Question 3 [20 marks]

- (a) Please refer to the multistage amplifier circuit shown in Figure 3. Calculate the smallsignal input impedance of the gain stage indicated by R_{i2} . It is given that current $I_{R4} = 0.4$ mA, and for the transistors $\beta = 200$ and $V_A = 100$ V. [4 marks]
- (b) Refer to Figure 3 also. If the gain of the differential amplifier: $A_{d1} = v_{o2}/v_d$, the gain of the gain stage: $A_{v2} = v_{o3}/v_{o2}$, and the gain of the output stage: $A_{v2} = v_o/v_{o3}$,
 - (i) Express A_{vtotal} , i.e. the overall gain of the op-amp circuit in terms of A_{d1} , A_{v2} and A_{v3} . [2 marks]
 - (ii) How does value of R_{i2} calculated in part (a) affects the gain A_{d1} . [2 marks]

Figure 3

(c) Figure 4 shows the Class-AB output stage circuit. Assume that $V_{CC} = 10$ V, $V_{BB} = 1.35$ V, and $R_L = 1$ k Ω . Transistors Q_n and Q_p are matched, with $I_S = 4 \times 10^{-15}$ A. It is given that output voltage $v_0 = -8$ V. Calculate the voltages v_{BEN} , v_{EBP} , and input voltage v_I , as well as currents i_L , i_{Cn} , and i_{Cp} . Then calculate the power dissipated in the transistors P_{Qn} and P_{Qp} .

[12 marks]

Figure 4

Q3 Answer

Question 3(a) [4 marks]

$$R_{i2} = r_{\pi 3} + (1+\beta)r_{\pi 4}$$
 [1.5]
 $I_{E4} = I_{R4} = 0.4mA$
 $I_{C4} = \frac{\beta}{1+\beta}I_{E4} = \frac{200}{201}(0.4m) = 0.398mA$
 $r_{\pi 4} = \frac{\beta V_T}{I_{C4}} = \frac{(200)(26m)}{0.398m} = 13.07k\Omega$ [0.5]
 $[r_{\pi 4} = 13k\Omega \text{ with } I_{C4} \cong I_{E4} \text{ is also okay}]$
 $I_{E3} = I_{B4} = \frac{I_{E4}}{1+\beta}$
 $I_{C3} = \frac{\beta}{1+\beta}I_{E3} = \frac{\beta}{(1+\beta)}\frac{I_{E4}}{(1+\beta)} = \frac{200}{(201)^2}(0.4m) = 1.98 \times 10^{-6}A$ [0.5]
 $r_{\pi 3} = \frac{\beta V_T}{I_{C3}} = \frac{(200)(26m)}{1.98 \times 10^{-6}} = 2.63M\Omega$ [0.5]
 $\therefore R_{i2} = (2.63M) + (201)(13.07k) = 5.26M\Omega$ [1]

Question 3(b) [4 marks] (i) $A_{vTOTAL} = V_o/V_d = A_{d1} \times A_{v2} \times A_{v3}$ [2]

(ii) The value of Ri2 is very large, hence the input impedance of the 2nd gain stage will not load down or decrease the gain of the 1st stage, Ad1. I.e. the loading effect of the 2nd stage onto the 1st stage can be neglected. [2]

Question 3(c) [12 marks]

For $v_0 = -8 \text{ V}$, $i_L = V_0 / R_L = (-8 \text{V})/(1 \text{ k}\Omega) = -8 \text{ mA}$ [1]

Therefore, Q_p is conducting and Q_n is OFF.

Approximation:

$$i_{Cp} \approx |i_L| = 8 \text{ mA}$$
[1]

$$v_{EBp} = V_T \ln(i_{Cp} / I_S) = 0.7364 \text{ V}$$
[1]

$$v_{BEn} = V_{BB} - v_{EBp} = 1.35 - 0.7364 = 0.6136 \text{ V}$$
[1]

$$V_{In} = V_O + V_{BB}/2 - v_{EBp} = -8 + 1.35/2 - 0.7364 = -8.06 \text{ V}$$
[1]

$$i_{Cn} = I_S \exp(V_{BEn} / V_T) = (4x10^{-15}) \exp(0.6136 / 0.026) = 7.102x10^{-5} \text{ A}$$
[1]

$$i_{Cp} = i_{Cp} + i_L$$
[1]

$$i_{Cp} = i_{Cn} - i_L \text{ Recalculate } i_{Cp} = 7.102x10^{-5} - (-8m) = 8.071 \text{ mA}$$
[1]

For Q_n :

$$V_{CEn} = V_{CC} - V_0 = 10 - (-8) = 18 \text{ V}$$
 [0.5]

$$P_{Qn} = i_{Cn} V_{CEn} = (7.102 \text{ x} 10^{-5})(18) = 1.278 \text{ mW}$$
 [0.5]
[1]

For Q_p : $V_{ECp} = V_0 - (-V_{CC}) = (-8) - (-10) = 2 V$ [0.5] $P_{Qp} = i_{Cp} v_{ECp} = (8.071 \text{ m})(2) = 16.14 \text{ mW}$ [0.5] [1]

Question 4 [20 marks]

Consider a standard 741 operational amplifier (op-amp) circuit as shown in Figure 5. Study Figure 5 carefully and <u>observe the output stage</u> of the operational amplifier. Assume load resistance connected to the <u>Output of the 741 op-amp</u> is $R_L = 2 \text{ k}\Omega$.

The op-amp is supplied by $\pm 5 \text{ V DC}$ voltages. The transistors have $\beta_n = 200$, $\beta_p = 50$, $V_{AN} = V_{AP} = 50 \text{ V}$, $V_{BE}(\text{on}) = V_{EB}(\text{on}) = 0.6 \text{ V}$, and the reverse saturation currents $I_{S18} = I_{S19} = 2 \times 10^{-14} \text{ A}$, and $I_{S14} = I_{S20} = 5 \times 10^{-14} \text{ A}$.

From DC analysis, bias currents for selected transistors are $I_{C13A} = 0.125$ mA, $I_{C13B} = 0.375$ mA, $I_{C19} = 0.113$ mA. Determine the output stage quiescent currents I_{C14} and I_{C20} . Analyse the changes in output current i_{C20} if $i_{C14} = 1$ mA. Please state the class of this output stage.

This output stage includes a number of transistors that are õ**off**ö during the normal operation. By providing example, **identify and discuss** the functional operation of these transistors when they are õ**on**ö. [20 marks]

Figure 5

<u>Q4 Answer</u> [20 marks]

V_{BE19}	$= V_T \ln (I_{C19}/I_{S19}) = 0.026 \ln (0.113m/2E-14) = 0.58383 V$	[1.5]
I _{C18}	$= I_{B19} + (I_{R10}) = (I_{C19}/) + (V_{BE19}/R_{10})$	
	$= (0.113m/200) + (0.58383/50k) = 12.242\mu A$	[3]
V_{BE18}	= $V_T \mbox{ ln} (I_{C18} / I_{S18}) = 0.026 \mbox{ ln} (12.242 \mu / 2E \mbox{-}14) = 0.52604 \mbox{ V}$	[1.5]
V_{BB}	$= V_{BE18} + V_{BE19} = 0.52604 + 0.58383 = 1.1099 \ V$	[1.5]
$\mathbf{V}_{\mathrm{BE14}} = \mathbf{V}$	$_{BE20} = V_{BB}/2 = 1.1099/2 = 0.5549 V$	[1]
$\mathbf{I}_{\mathrm{C14}} = \mathbf{I}_{\mathrm{C20}}$	= $I_{S} \exp [V_{BE}/V_{T}] = (5E-14)\exp[0.5549/0.026] = 92.99 \ \mu A$	[2.5]

Class A-B Output Stage	
At $i_{C14} = 1 \text{ mA}$; $v_{BE14} = V_T \ln (i_{C14}/I_{S14}) = 0.026 \ln (1 \text{ m/5E-14}) = 0.6167 \text{ V}$	
$v_{BE20} = V_{BB} - v_{BE14} = 1.1099 \text{ ó } 0.6167 = 0.4932$	[1]
$i_{C20} = I_S \exp [v_{BE20}/V_T] = (5E-14)\exp[0.4932/0.026] = 8.654 \ \mu A$	[1]

Keywords:

short circuit protection circuitry; when R_L is shorted ó large current in Q_{14} during positive input cycle; R_6 and Q_{15} limits short circuit current in Q_{14} [5]

OR

short circuit protection circuitry; when R_L is shorted ó large current in Q_{20} during negative input cycle; R_{7} , Q_{21} and Q_{24} limits short circuit current in Q_{20} .

Question 5 [20 marks]

- (a) With an input resistor (R₁) of 50 kΩ, design an amplifier <u>using op-amp</u> with a closed-loop gain of 25 V/V. Draw and label clearly your circuit design. [4 marks]
- (b) Consider the two inverting op-amp circuit connected in cascade as shown in Figure 6. Let $R_1 = 25 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 80 \text{ k}\Omega$, and $R_4 = 50 \text{ k}\Omega$. Calculate v_0/v_I for the circuit. [4 marks]

Figure 6

(c) Figure 7 in the following page shows a design for an instrumentation amplifier with variable differential voltage gain using op-amps. In the design, R_{1POT} is a potentiometer (or a variable resistor) used to provide variable resistance so that differential voltage gain (A_v) of the instrumentation amplifier can be adjustable. With analysis, it can be shown that output voltage (v_0) for the difference amplifier constructed using op-amp A_3 , resistors R_3 , and resistors R_4 is

$$v_O = \frac{R_4}{R_3} (v_{O2} - v_{O1})$$

Figure 7

(i) Study Figure 7 carefully. Using same labels for all resistors, voltages and currents given in the Figure 7, show that the output voltage (v_0) of the instrumentation amplifier with variable differential voltage gain is [8 marks]

$$v_{O} = \frac{R_{4}}{R_{3}} \left(1 + \frac{2R_{2}}{R_{1f} + R_{1POT}} \right) (v_{I2} - v_{I1})$$

(ii) For the circuit in Figure 7, given that $R_4 = 2 R_3$, $R_2 = 495 k\Omega$, $R_{1f} = 10 k\Omega$, R_{1POT} is set at 40 ká , $v_{I1} = 0.90$ V, and $v_{I2} = 1.25$ V. Calculate A_v and v_O .

[4 marks]

-END OF QUESTION PAPER-

Q5 Answer

Question 5(a)

$$\begin{bmatrix} 4 \text{ marks} \end{bmatrix} \\ A_v &= v_0 / v_1 &= 1 + (R_2/R_1) \\ 25 &= 1 + (R_2/50k) \\ R_2 = 1200 \text{ ká} \\ \end{bmatrix}$$
[1]
Drawing: [2]

 $R_{\rm 1}$ = 50 ká , $R_{\rm 2}$ = 1200 ká , correct op-amp symbol, GND, $v_{\rm O}$, and $v_{\rm I}$

Question 5(b) [4 marks]

$$v_0 = (-R_4/R_3)v_{01}$$
 [1]
 $v_{01} = (-R_2/R_1)v_I$ [1]
 $v_0 = (-R_4/R_3)(-R_2/R_1)v_I$ [1]
 $v_0/v_I = (R_4/R_3)(R_2/R_1)$
 $= [(50k/80k)(100k/25k)] = 2.5 V/V$ [1]

Question 5(c)(i) [8 marks]

$$i_{1} = \frac{v_{I1} - v_{I2}}{R_{1f} + R_{1POT}} \quad [1]$$

$$v_{O1} = v_{I1} + i_{1}R_{2} = \left(1 + \frac{R_{2}}{R_{1f} + R_{1POT}}\right)v_{I1} - \frac{R_{2}}{R_{1f} + R_{1POT}}v_{I2} \quad [2]$$

$$v_{O2} = v_{I2} - i_{1}R_{2} = \left(1 + \frac{R_{2}}{R_{1f} + R_{1POT}}\right)v_{I2} - \frac{R_{2}}{R_{1f} + R_{1POT}}v_{I1} \quad [2]$$

$$v_{O} = \frac{R_{4}}{R_{3}}\left(v_{O2} - v_{O1}\right) \quad [1]$$

$$v_{O} = \frac{R_{4}}{R_{3}}\left(1 + \frac{2R_{2}}{R_{1f} + R_{1POT}}\right)\left(v_{I2} - v_{I1}\right) \quad [2]$$

Question 5(c)(ii) [4 marks]

$$A_{v} = \frac{v_{O}}{(v_{I2} - v_{I1})} = \frac{R_{4}}{R_{3}} \left(1 + \frac{2R_{2}}{R_{1f} + R_{1POT}} \right) [1]$$

$$A_{v} = \frac{2R_{3}}{R_{3}} \left(1 + \frac{2(495k)}{10k + 40k} \right) = 41.6 \text{ V/V} \qquad [1]$$

$$v_{O} = \frac{R_{4}}{R_{3}} \left(1 + \frac{2R_{2}}{R_{1f} + R_{1POT}} \right) (v_{I2} - v_{I1}) \qquad [1]$$

$$v_{O} = A_{v} (v_{I2} - v_{I1}) = (41.6)(1.25 - 0.90) = 16.224 \text{ V} \qquad [1]$$

APPENDIX:

A) BASIC FORMULA FOR TRANSISTOR

<u>BJT</u> $i_C = I_S e^{v_{BE}/V_T}$; NPN $i_C = I_S e^{v_{EB}/V_T}$; PNP

$$i_{C} = \beta i_{B} = \alpha i_{E}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$

 $g_m = \frac{I_{CQ}}{V_T}$

<u>MOSFET</u>

; N - MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k_p}{2} \cdot \frac{W}{L}$

$$r_{\pi} = \frac{\beta V_{T}}{I_{CQ}} \qquad ; \text{Small signal} \\ r_{o} = \frac{V_{A}}{I_{CQ}} \qquad g_{m} = 2\sqrt{K_{2}I_{DQ}} \\ V_{T} = 26 \text{ mV} \qquad r_{o} \cong \frac{1}{\lambda I_{DQ}}$$

B) <u>HYBRID-</u> EQUIVALENT CIRCUITS

