Student ID Number: Model answer

Section:

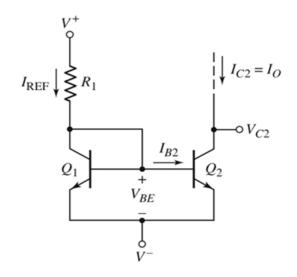
Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 1 00

SEMESTER 1, ACADEMIC YEAR 2015/2016

Date: 11 June 2015 Time: 15 minutes

Question:


Refer to Figure 1. All transistors are matched.

The circuit parameters are: $V^+ = 7.5 \text{ V}$ and $V^- = -7.5 \text{ V}$.

The transistor parameters are: V_{BE} (on) = 0.6 V, V_A = 150 V, and β = 50.

DESIGN a two-transistor BJT current source similar to the **Figure 1** using all the parameters given above so that its output resistance (R_0) is 200 k Ω . Show clearly all calculations as marks are given according to this.

[10 marks]

 $i_C = I_S e^{v_{BE}/V_T}$; npn $i_C = I_S e^{v_{EB}/V_T}$; pnp $i_C = \alpha i_E = \beta i_B$ $i_E = i_R + i_C$ $\alpha = \frac{\beta}{\beta + 1}$

Figure 1

;Small signal

Answer:

$$R_{O} = r_{O2} = V_{A} / I_{O}$$
 [2]

$$I_{O} = V_{A} / R_{O}$$
 [1]

$$= (150) / (200k)$$
 [0.5]

$$= 0.75 \text{ mA}$$
 [0.5]

$$I_{REF} = I_{O} (1 + 2/\beta)$$
 [2]

$$= (0.75m)(1 + 2/50)$$
 [0.5]

$$= 0.78 \text{ mA}$$
 [0.5]

$$R_{1} = (V^{+} - V_{BE} - V^{-}) / I_{REF}$$
 [2]

$$= (7.5 - 0.6 - (-7.5)) / (0.78m)$$
 [0.5]

$$= 18.4615 \text{ k}\Omega$$
 [0.5]

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

 $\beta = g_m r_{\pi}$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

$$V_{T} = 26 \,\text{mV}$$

Student ID Number: Model answer

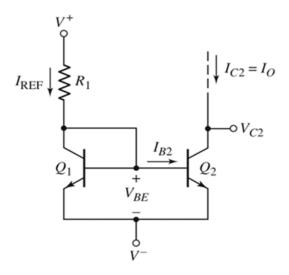
Section:

EEEB273 - Quiz 1 oi

SEMESTER 1, ACADEMIC YEAR 2015/2016

Date: 11 June 2015 Time: 15 minutes Lecturer: Dr. Jamaludin Bin Omar

Question:


Refer to Figure 1. All transistors are matched.

The circuit parameters are: $V^+ = 8 \text{ V}$ and $V^- = -8 \text{ V}$.

The transistor parameters are: V_{BE} (on) = 0.6 V, V_A = 160 V, and β = 50.

DESIGN a two-transistor BJT current source similar to the Figure 1 using all the parameters given above so that its output resistance (R_0) is 200 k Ω . Show clearly all calculations as marks are given according to this.

[10 marks]

$$i_C = I_S e^{v_{BE}/V_T}$$
; npn
 $i_C = I_S e^{v_{EB}/V_T}$; pnp
 $i_C = \alpha i_E = \beta i_B$
 $i_E = i_B + i_C$
 $\alpha = \frac{\beta}{\beta + 1}$

Figure 1

;Small signal

$\beta = g_m r_{\pi}$ **Answer:**

R_{O}	$= r_{02}$	$=V_A/I_O$	[2]
I_{o}		$=V_A/R_O$	[1]
		= (160) / (200k)	[0.5]
		= 0.80 mA	[0.5]
I_{REF}		$=I_{O}\left(1+2/\beta\right)$	[2]
		$= (0.80 \mathrm{m})(1 + 2/50)$	[0.5]
		= 0.832 mA	[0.5]
R_1		$= (V^+ - V_{BE} - V^-) / I_{REF}$	[2]
		= (8 - 0.6 - (-8)) / (0.832m)	[0.5]
		$=18.509 \text{ k}\Omega$	[0.5]

$$r_{\pi} = \frac{P \cdot T}{I_{CQ}}$$

$$g_{m} = \frac{I_{CQ}}{V_{T}}$$

$$r_{o} = \frac{V_{A}}{I_{CQ}}$$

$$V_T = 26 \,\mathrm{mV}$$

Student ID Number: Model answer

Section:

Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 1 io

SEMESTER 1, ACADEMIC YEAR 2015/2016

Date: 11 June 2015 Time: 15 minutes

Question:

Refer to Figure 1. All transistors are matched.

The circuit parameters are: $V^+ = 7.5 \text{ V}$ and $V^- = -7.5 \text{ V}$.

The transistor parameters are: V_{BE} (on) = 0.6 V, V_A = 150 V, and β = 80.

DESIGN a two-transistor BJT current source similar to the Figure 1 using all the parameters given above so that its output resistance (R_0) is 200 k Ω . Show clearly all calculations as marks are given according to this.

[10 marks]

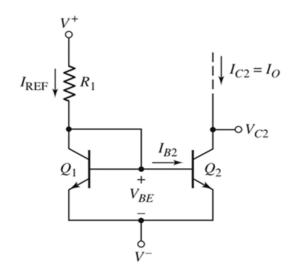


Figure 1

$i_C = I_S e^{v_{BE}/V_T}$; npn $i_C = I_S e^{v_{EB}/V_T}$; pnp $i_C = \alpha i_E = \beta i_B$ $i_E = i_B + i_C$ $\alpha = \frac{\beta}{\beta + 1}$

;Small signal

$$\beta = g_m r_{\pi}$$

$$r_{\pi} = \frac{\beta V_{T}}{I_{CQ}}$$

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

$$V_T = 26 \,\mathrm{mV}$$

Answer:

R_{O}	$= r_{02}$	$=V_A/I_O$	[2]
I_0		$=V_A/R_O$	[1]
		= (150) / (200k)	[0.5]
		= 0.75 mA	[0.5]
I_{REF}		$=I_O\left(1+2/\beta\right)$	[2]
		$= (0.75 \mathrm{m})(1 + 2/80)$	[0.5]
		= 0.76875 mA	[0.5]
R_1		$= (V^+ - V_{BE} - V^-) / I_{REF}$	[2]
		= (7.5 - 0.6 - (-7.5)) / (0.76875m)	[0.5]
		$= 18.7317 \text{ k}\Omega$	[0.5]

Student ID Number: Model answer

Section:

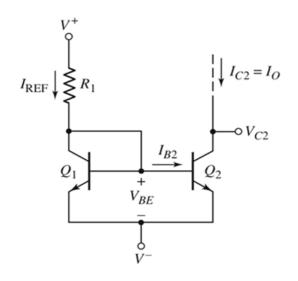
Lecturer: Dr. Jamaludin Bin Omar

EEEB273 - Quiz 1 ii

SEMESTER 1, ACADEMIC YEAR 2015/2016

Date: 11 June 2015 Time: 15 minutes

Question:


Refer to Figure 1. All transistors are matched.

The circuit parameters are: $V^+ = 8 \text{ V}$ and $V^- = -8 \text{ V}$.

The transistor parameters are: V_{BE} (on) = 0.6 V, V_A = 160 V, and β = 80.

DESIGN a two-transistor BJT current source similar to the Figure 1 using all the parameters given above so that its output resistance (R_0) is 200 k Ω . Show clearly all calculations as marks are given according to this.

[10 marks]

 $i_C = I_S e^{v_{BE}/V_T}$; npn $i_C = I_S e^{v_{EB}/V_T}$; pnp $i_C = \alpha i_E = \beta i_B$ $i_E = i_B + i_C$ $\alpha = \frac{\beta}{\beta + 1}$

Figure 1

;Small signal

$$\beta = g_m r_{\pi}$$

Answer:

R_{o}	$= r_{02}$	$=V_A/I_0$	[2]
I_{O}		$=V_A/R_O$	[1]
		= (160) / (200k)	[0.5]
		= 0.80 mA	[0.5]
I_{REF}		$=I_{O}\left(1+2/\beta\right)$	[2]
		$= (0.80 \mathrm{m})(1 + 2/80)$	[0.5]
		= 0.82 mA	[0.5]
R_1		$= (V^+ - V_{BE} - V^-) / I_{REF}$	[2]
		=(8-0.6-(-8))/(0.82m)	[0.5]
		$= 18.78 \text{ k}\Omega$	[0.5]

$$g_m = \frac{I_{CQ}}{V_T}$$

$$r_o = \frac{V_A}{I_{CQ}}$$

$$V_T = 26 \,\mathrm{mV}$$