Name:

Student ID Number:

Section:

Lecturer: Dr Azni Wati/ Dr Fazrena Azlee/

Dr Jehana Ermy/ Dr Jamaludin

Table Number:

College of Engineering Department of Electronics and Communication Engineering

Test 1 – MODEL ANSWERS

SEMESTER 1, ACADEMIC YEAR 2015/2016

Subject Code	•	EEEB273
Course Title	:	Electronics Analysis & Design II
Date	:	5 July 2015
Time Allowed	•	1 ¹ / ₂ hours

Instructions to the candidates:

- 1. Write your Name and Student ID number. Circle Lecturer for your section.
- 2. Write all your answers using pen. DO NOT USE PENCIL except for the diagram.
- 3. ANSWER ALL QUESTIONS.
- 4. WRITE YOUR ANSWER ON THIS QUESTION PAPER.

NOTE: DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO.

Question Number	Q1	Q2	Q3	Total
Marks	40	30	30	100

BASIC FORMULA FOR TRANSISTOR

<u>BJT</u>

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

$$\beta = g_m r_{\pi}$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$
$$V_T = 26 \text{ mV}$$

MOSFET

; N – MOSFET

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$

 $i_D = K_n [v_{GS} - V_{TN}]^2$
 $K_n = \frac{k'_n}{2} \cdot \frac{W}{L}$

; P – MOSFET

$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$

 $i_D = K_p [v_{SG} + V_{TP}]^2$
 $K_p = \frac{k'_p}{2} \cdot \frac{W}{L}$

;Small signal

$$g_m = 2\sqrt{K_2 I_{DQ}}$$

 $r_o \cong \frac{1}{\lambda I_{DQ}}$

<u>Question 1</u> [40 marks]

For all **BJT current sources** in **this question**, all transistors are matched and have same parameters. The transistor parameters are: $\beta = 50$, $V_{BE}(on) = 0.6$ V, and $V_A = 150$ V. The circuit parameters for the current sources are: $V^+ = 10$ V, $V^- = -10$ V, and $R_1 = 24$ k Ω .

- (a) Calculate reference current (I_{REF}) , output current (I_0) , and output resistance (R_0) for Three-transistor current source, Wilson current source, and Cascode current source. Show all calculations clearly and do not forget to put proper Units for I_{REF} , I_0 , and R_0 . [36 marks]
- (b) Based on I_O and I_{REF} relationships and R_O , which current source has the most stable I_O , which current source has the medium stable I_O , and which current source has the least stable I_O from the three current sources given in part (a)? Explain why you had said that. [4 marks]

Answer for Question 1

Question 1(a) [36 marks]

Three-transistor current	Wilson current source	Cascode current source
$ \frac{I_{REF}}{I_{REF}} = (V^+ - 2 V_{BE} - V^-)/R_1 \\ = (10 - 2x0.6 - (-10))/(24k) \\ = 0.783 \text{ mA} $	$I_{REF} = (V^+ - 2 V_{BE} - V^-)/R_1$ = (10 - 2x0.6 - (-10))/(24k) = 0.783 mA	$I_{REF} = (V^+ - 2 V_{BE} - V^-)/R_1$ = (10 - 2x0.6 - (-10))/(24k) = 0.783 mA
$I_O = I_{REF} / (1 + 2/(\beta(1+\beta)))$ = (0.783m)/(1+2/(50x51)) = 0.783 mA	$I_O = I_{REF} / (1 + 2/(\beta(2+\beta)))$ = (0.783m)/(1+2/(50x52)) = 0.783 mA	$I_O = I_{REF} / (1 + 4/\beta)$ = (0.783m)/(1+4/(50)) = 0.725 mA
$r_{02} = V_A / I_0$ = 150/(0.783m) = 191.57 kΩ	$r_{O3} = V_A / I_O$ = 150/(0.783m) = 191.57 kΩ	$r_{O4} = V_A / I_O$ = 150/(0.725m) = 206.89 kΩ
$R_0 = r_{02}$ = 191.57 kΩ	$R_{O} = (\beta r_{O3})/2$ = (50 x 191.57k)/2 = 4.789 MΩ	$R_0 = \beta r_{04}$ = 50x206.89k = 10.3445 MΩ

[4 marks each box, Total 36 marks]

Question 1(b) [4 marks]

Most stable: Wilson, medium: Cascode, least: 3-transistor. Io for Wilson is approximately equal to Iref although Ro is the middle. Although Io for Cascode is less than Iref, its Ro is highest. 3-transistor has smallest Ro although its Io is similar to Wilson. **Any explanation that makes sense may be accepted!** [4 marks]

<u>Question 2</u> [30 marks]

The circuit shown in Figure 2 is a PMOS version of a two-transistor current source. Assume that the transistor parameters are $V_{TP} = -0.4 \text{ V}$, $k'_p = 80 \text{ }\mu\text{A}/\text{V}^2$, and $\lambda = 0$. The transistor width-to-length ratios are $(W/L)_1 = 30$, $(W/L)_2 = 15$, and $(W/L)_3 = 10$.

(a) **Determine** I_0 , I_{REF} , V_{SG1} , and V_{SG3}

Calculate the maximum value of V_{D2} such that M_2 remains biased in the saturation region. [6 marks]

(c) Find the largest value of R such that M_2 remains biased in the saturation region . [6 marks]

Answer for Question 2

(b)

[18 marks]

Figure 2

Answer for Question 2

Question 2(a) [18 marks]

ID1 = ID3 = IREF	[2 marks]
$I_{D1} = (1/2) k \phi (W/L)_1 (V_{SG1} + V_{TP})^2 = (1/2)(80u)(30)(VSG1 - 0.4)^2 i i eqn 1$	[2 marks]
$I_{D3} = (1/2) k \phi (W/L)_3 (V_{SG3} + V_{TP})^2 = (1/2)(80u)(10)(VSG3 - 0.4)^2 i i eqn 2$	[2 marks]
$V^+ - V_{SG1} \circ V_{SG3} = 0$, so $VSG3 = V + - VSG1 \circ eqn 3$	[2 marks]
Solve simultaneous equations: $ID1 = ID3 = IREF$	
$(1/2)(80u)(30)(VSG1-0.4)^2 = (1/2)(80u)(10)(VSG3-0.4)^2$, replace VSG3 into eqn 2	2
(1/2)(80u) (30)(VSG1-0.4) ² = $(1/2)(80u)$ (10)(3 - VSG1 - 0.4) ²	
$(30)(VSG1-0.4)^2 = (10)(2.6 - VSG1)^2$	[2 marks]
VSG1 = -2.605V or 1.205V, choose VSG1 = 1.205V since VSG > VTP	[2 marks]
IREF = $I_{D1} = (1/2) k \phi (W/L)_1 (V_{SG1} + V_{TP})^2 = (1/2)(80u)(30)(1.205 - 0.4)^2 = 0.78 \text{ mA}$	[2 marks]

$$VSG3 = 3 \circ VSG1 = 3 \circ 1.205 = 1.795V$$
 [2 marks]

Question 2(b) [6 marks]

VD2 = V + - VSD2 VD2(max) = V + - VSD2(min) = V + - VSD2(sat)	[1 mark] [2 marks]
VSD2(sat) = VSG2 + VTP = 1.205 + (-0.4) = 0.805 V	[2 marks]
So VD2(max) = 3- 0.805 = 2.195 V	[1 marks]

Question 2(c) [6 marks]

[2 marks]
[2 marks]
[2 marks]

<u>Question 3</u> [30 marks]

Figure 3 shows a circuit diagram for a BJT differential amplifier (diff-amp). The circuit parameter values are: $V^+ = +10$ V, $V^- = -10$ V, and $R_C = 10$ kΩ. The transistor parameters are: $\beta = \infty$ (neglect base current), $V_A = \infty$, and $V_{BE}(on) = 0.7$ V.

(a) Assume that Q_1 and Q_2 are **matched pair** and operating at the same temperature.

By defining

 $v_d = v_{B1} - v_{B2}$

Show that

 $i_{C1} = \frac{I_Q}{1 + e^{-v_d/V_T}}$ and $i_{C2} = \frac{I_Q}{1 + e^{+v_d/V_T}}$ [10 marks]

(b) The circuit has voltages measured at $v_{C1} = v_{C2} = 4.0$ V, for $v_{B1} = v_{B2} = 0$ V. Find I_Q . [6 marks]

(c) If $v_{B1} = 1.2 \text{ mV}$ and $v_{B2} = -2.0 \text{ mV}$

(i)	Calculate v_d and v_{cm} .	[4 marks]
-----	--------------------------------	-----------

(ii) Calculate i_{C1} and i_{C2} . [5 marks]

(iii) Find v_o if the diff-amp gain $A_d = 40$ and $A_{cm} = -0.05$. [5 marks]

Answer for Question 3

[1]

Answer	for Question 3(a)	
$i_{C1} = 1$	$V_S e^{v_{BE1}/V_T}$	[1]
$i_{C2} =$	$I_S e^{v_{BE2}/V_T}$	[1]
$I_Q = i_Q$	$_{C1} + i_{C2} = I_{S} \left[e^{v_{BE1}/V_{T}} + e^{v_{BE2}/V_{T}} \right]$	[3]
$v_{\scriptscriptstyle BE2}$ –	$-v_{BE1} = (v_{B2} - v_E) - (v_{B1} - v_E) = v_{B2} - v_{B1}$	$v_{B1} = -v_d$
$\frac{i_{C1}}{I_Q} = \frac{1}{2}$	$\frac{1}{1+e^{(v_{BE_2}-v_{BE_1})/V_T}}=\frac{1}{1+e^{-v_d/V_T}}$	[2]
$\frac{i_{C2}}{I_Q} =$	$\frac{1}{1+e^{-(v_{BE2}-v_{BE1})/V_T}} = \frac{1}{1+e^{+v_d/V_T}}$	[2]
$\frac{\text{Answer}}{v_{C1}} = 4.0 \text{ V}$ $i_{C1} = 1000 \text{ V}$	$\frac{\text{for Question 3(b)}}{V^+ \acute{0} i_{C1} R_C} = 10 \acute{0} (i_{C1})(10\text{k}) = 0.6 \text{ mA}$	[1] [1] [1]
$ \begin{array}{l} \beta = \hat{O} \\ i_{C1} \\ I_Q \\ \end{array} = $	$= i_{E1} = I_Q / 2$ = 2xi_{C1} = 2x0.6 mA = 1.2 mA	[1] [1] [1]
$\frac{\text{Answer}}{v_{B1} = 1.2}$	$\frac{\text{for Question 3(c)}}{2 \text{ mV and } v_{B2} = -2.0 \text{ mV}}$	
(i) <i>v</i> _d	$= v_{B1} - v_{B2}$	
	= 1.2m ó (-2m) = 3.2 mV	[2]
<i>V_{cm}</i>	$= (v_{B1} + v_{B2}) / 2$	
	= (1.2m + (-2m))/2 = -0.4 mV	[2]
(ii) <i>iC</i> 1	$= I_Q / [1 + \exp(-v_d/V_T)]$	
	= 1.2m/[1+exp(-3.2m/0.026)]	
	= 0.6369 mA	[2.5]
<i>i</i> _{C2}	$= I_Q / [1 + \exp(+v_d/V_T)]$	
	= 1.2m/[1+exp(+3.2m/0.026)]	
	= 0.5631 mA	[2.5]
(iii) v _o	$= A_d \ge v_d + A_{cm} \ge v_{cm}$	[2]
	= (40)(3.2m) + (-0.05)(-0.4m)	[2]
	=128.02 mV	[1]