

## COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION

## SEMESTER 2 2015 / 2016

| PROGRAMME    | : Bachelor of Electrical & Electronics Engineering (Honours)<br>Bachelor of Electrical Power Engineering (Honours) |
|--------------|--------------------------------------------------------------------------------------------------------------------|
| SUBJECT CODE | : EEEB273                                                                                                          |
| SUBJECT      | : ELECTRONIC ANALYSIS AND DESIGN II                                                                                |
| DATE         | : February 2016                                                                                                    |
| TIME         | : 3 hours                                                                                                          |

### **INSTRUCTIONS TO CANDIDATES:**

- 1. This paper contains **FIVE** (5) questions in **NINE** (9) pages.
- 2. Answer ALL questions.
- 3. Write ALL answers in the answer booklet provided. Use pen to write your answer.
- 4. Write answer to different question on **a new page**.
- 5. Show clearly all calculations, complete with proper Unit for every parameter.

# THIS QUESTION PAPER CONSISTS OF NINE (9) PRINTED PAGES INCLUDING THIS COVER PAGE.

#### Question 1 [20 marks]

Figure 1 shows a BJT differential amplifier biased by a BJT cascode current source. Transistor  $Q_1$  and  $Q_2$  in the differential amplifier have the transistor parameters of  $\beta = 150$ ,  $V_{BE}(\mathbf{on}) = 0.7$  V, and  $V_A = \infty$ . Transistor  $Q_3$ ,  $Q_4$ ,  $Q_5$ , and  $Q_6$  in the cascode current source have the transistor parameters of  $\beta = 50$ ,  $V_{BE}(\mathbf{on}) = 0.7$  V, and  $V_A = 250$  V.

The circuit parameters are:  $V^+ = 10$  V,  $V^- = -10$  V, and  $I_{REF} = 0.5$  mA. Output for the differential is taken as **one-sided output** at  $v_{C2}$ .

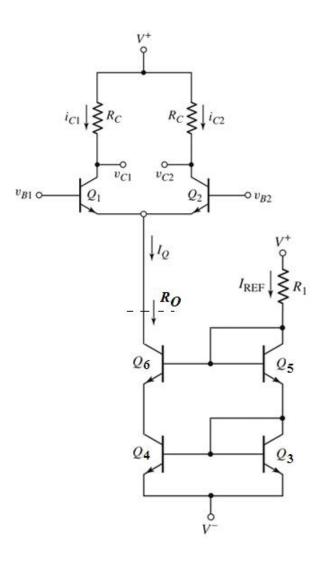
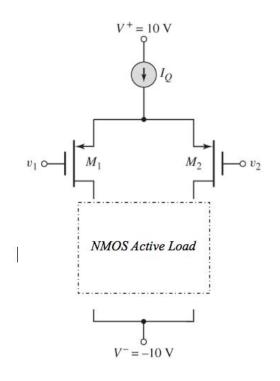



Figure 1


- (a) Calculate  $R_1$  and the output resistance  $(R_0)$  of the cascode current source looking into the collector of  $Q_6$ . [7.5 marks]
- (b) **Determine** the value of  $R_C$  if the differential-mode voltage gain  $(A_d)$  of the differential amplifier is 200 V/V? [5 marks]
- (c) Find the common-mode voltage gain  $(A_{cm})$  of the differential amplifier using the values found in part (a) and (b). The equation for calculating  $A_{cm}$  is given as

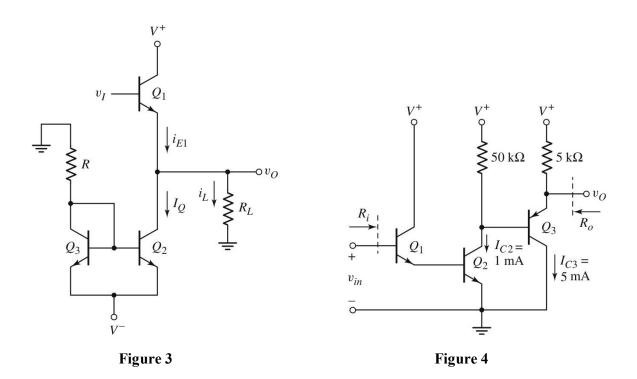
$$A_{cm} = \frac{-g_{m2}R_C}{1 + \frac{2(1+\beta)R_O}{r_{\pi 2}}}$$
 [6 marks]

(d) **Suggest how** the common-mode voltage gain  $(A_{cm})$  can be reduced. [1.5 marks]

#### Question 2 [20 marks]

Figure 2 shows a differential amplifier with a pair of PMOS transistors as input devices. The circuit is biased with  $I_Q = 0.2$  mA, and the transistor parameters are:  $g_m = 0.2$  mA/V,  $K_n = K_p = 0.1$  mA/V<sup>2</sup>,  $\lambda_n = 0.01$  V<sup>-1</sup>,  $\lambda_p = 0.015$  V<sup>-1</sup>,  $V_{TN} = 1$  V, and  $V_{TP} = -1$  V. A pair of NMOS transistors is then connected to the circuit as an active load.






- (a) Draw the complete circuit of a differential amplifier with NMOS active load, as shown in Figure 2. [5 marks]
- (b) Find the quiescent drain-to-source voltage in each transistor (i.e.  $V_{DS}$  or  $V_{SD}$  of each transistor) when  $V_{G1} = V_{G2} = 0$  Volt. [5 marks]
- (c) **Determine** the open-circuit differential-mode voltage gain,  $A_d$ . [5 marks]
- (d) **Calculate** the output resistance,  $R_0$ , of differential amplifier with active load in Figure 2. [5 marks]

#### Question 3 [20 marks]

(a) Consider the Class-A emitter-follower circuit shown in Figure 3. The circuit parameters are  $V^+ = 12$  V and V = -12 V. Assume all transistors are matched with  $V_{BE}(on) = 0.7$  V,  $V_{CE}(sat) = 0.2$  V, and  $V_A = \infty$ . An average power of 50 mW is to be delivered to the load  $R_L = 25 \Omega$ . Design the circuit such that the minimum current  $i_{E1}$  is 20% of  $I_Q$ .

[10 marks]



(b) Determine the input resistance  $(R_i)$  and output resistance  $(R_o)$  of the circuit in Figure 4. Let the transistor parameters  $\beta = 60$  and  $V_A = \infty$ . [10 marks]

#### Question 4 [20 marks]

Assume the transistor parameters of  $|V_T| = 0.6$  V and  $\lambda = 0.015$  V<sup>-1</sup> for all transistors,  $k'_n = 100$  $\mu A/V^2$ ,  $k'_p = 40 \ \mu A/V^2$ , and circuit parameters of  $V^+ = +5$  V and V = -5 V, and  $R_{set} = 150$  k $\Omega$ . Given that the aspect ratios  $(W/L)_{3,4} = 10$  for transistors  $M_3$  and  $M_4$ , and (W/L) = 20 for other transistors, determine the overall small signal differential-mode voltage gain for the MC14573 op-amp in Figure 5. [20 marks]

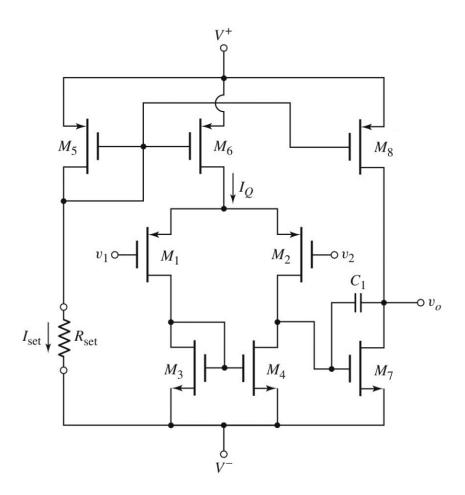



Figure 5

### Question 5 [20 marks]

- (a) With a feedback resistor  $(R_2)$  of 250 k $\Omega$ , design an amplifier <u>using op-amp in non-inverting configuration</u> with a closed-loop gain which can be varied from 11 to 51 V/V. The closed-loop gain can be varied using a potentiometer  $(R_{1V})$  and a fixed-value resistor  $(R_{1F})$ . Draw and label clearly your circuit design. [6 marks]
- (b) For an **amplifier circuit** using op-amps shown in **Figure 6**, use appropriate ideal op-amp characteristics to **show** that

$$v_0 = v_{I1} + v_{I2}$$

when  $R_1 = R_2 = R_F = 100 \text{ k}\Omega$ .

[6 marks]

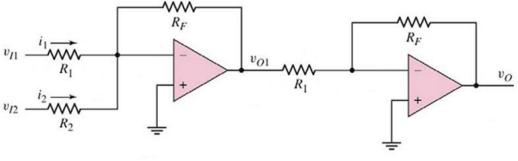



Figure 6

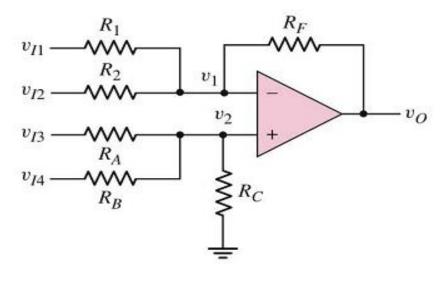



Figure 7

(c) For a generalized summing op-amp shown in Figure 7 the total output voltage  $(v_0)$  is the sum of the individual terms, or

where

$$v_{O} = -\frac{R_{F}}{R_{1}}v_{I1} - \frac{R_{F}}{R_{2}}v_{I2} + \left(1 + \frac{R_{F}}{R_{N}}\right)\left(\frac{R_{P}}{R_{A}}v_{I3} + \frac{R_{P}}{R_{B}}v_{I4}\right)$$
$$R_{N} = R_{1}||R_{2}$$
$$R_{P} = R_{A}||R_{B}||R_{C}$$

With the smallest resistor value allowable in the circuit is 25 k $\Omega$ , design a summing opamp similar to Figure 7 to produce the output of

$$v_O = -10v_{I1} - 5v_{I2} + 2v_{I3} + 5v_{I4}$$
[8 marks]

#### -END OF QUESTION PAPER-

#### **APPENDIX:**

## A) BASIC FORMULA FOR TRANSISTOR

| <u>BJT</u>                       | <u>MOSFET</u>                          |
|----------------------------------|----------------------------------------|
| $i_C = I_S e^{v_{BE}/V_T}$ ; NPN | ; N – MOSFET                           |
| $i_C = I_S e^{v_{EB}/V_T}$ ; PNP | $v_{DS}(\text{sat}) = v_{GS} - V_{TN}$ |
|                                  | $i = K [v - V]^2$                      |

$$i_{C} = \beta i_{B} = \alpha i_{E}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

;Small signal

 $\beta = g_m r_\pi$ 

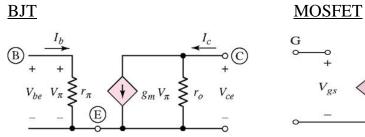
 $g_m = \frac{I_{CQ}}{V_T}$ 

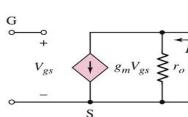
 $r_{\pi} = \frac{\beta V_T}{I_{CQ}}$ 

 $r_o = \frac{V_A}{I_{CQ}}$ 

 $V_T = 26 \,\mathrm{mV}$ 

$$v_{DS}(\text{sat}) = v_{GS} - V_{TN}$$
$$i_D = K_n [v_{GS} - V_{TN}]^2$$
$$K_n = \frac{\mu_n C_{ox} W}{2L} = \frac{k'_n}{2} \cdot \frac{W}{L}$$


; P - MOSFET  


$$v_{SD}(\text{sat}) = v_{SG} + V_{TP}$$
  
 $i_D = K_p [v_{SG} + V_{TP}]^2$   
 $K_p = \frac{\mu_p C_{ox} W}{2L} = \frac{k_p'}{2} \cdot \frac{W}{L}$ 

;Small signal

$$g_m = 2\sqrt{K_2 I_{DQ}}$$
$$r_o \cong \frac{1}{\lambda I_{DQ}}$$

#### B) <u>HYBRID-</u> EQUIVALENT CIRCUITS





S

D

 $V_{ds}$ 

 $I_d$