EEEB273 - Quiz 2 SEMESTER 2, ACADEMIC YEAR 2015/2016 Date: 16 Nov 2015 Time: 15 minutes Name: Dr JBO Student ID Number: Model answer Section: 01A/B 02A/B Lecturer: Dr. Jamaludin Bin Omar

Question:

Refer to the **Wilson** current source shown in Figure 1. Assume the reference current I_{REF} is 0.25 mA. The transistor parameters are V_{BE} (on) = 0.7 V, $V_A = 120$ V, and $\beta = 80$.

- (a) Determine the output resistance R_0 looking into the collector of Q_3 .
- (b) What is the change in I_0 as the output voltage change by +5 Volts? [3 marks]

 $i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npn}$ $i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$ $i_{C} = \alpha i_{E} = \beta i_{B}$ $i_{E} = i_{B} + i_{C}$ $\alpha = \frac{\beta}{\beta + 1}$

[7 marks]

;Small signal

Answer:

(a)		
I_0	$= I_{REF} / [1 + 2/\beta(2+\beta)]$	[1]
	$= (0.25m)/[1 + 2/(80 \times 82)]$	[1]
	= 0.2499 mA	[1]
R_O	$= (\beta r_{O3}) / 2 = (\beta V_A) / (2 I_O)$	[2]
	= (80 x 120) / (2 x 0.2499 m)	[1]
	= 19.205 MΩ	[1]
(b)		
I_0	$= dV_O / R_O$	[1]
	= 5 / 19.205 M	[1]
	$= 0.26 \ \mu A$	[1]

$$\beta = g_m r_{\pi}$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$

	Name:	Dr JBO
	Student ID Number:	Model answer
EEEB273 - Ouiz 2	Section: 01A/B 02A/B	
SEMESTER 2, ACADEMIC YEAR 2015/2016	Lecturer: Dr. Jamaludin Bin Omar	
Date: 16 Nov 2015 Time: 15 minutes	,	

Question:

Refer to the **Wilson** current source shown in Figure 1. Assume the reference current I_{REF} is 0.25 mA. The transistor parameters are V_{BE} (on) = 0.7 V, $V_A = 100$ V, and $\beta = 80$.

(a) Determine the output resistance R_0 looking into the collector of Q_3 .

(b) What is the change in I_0 as the output voltage change by +4.5 Volts? [3 marks]

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npm}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

[7 marks]

;Small signal

Answer:

(a)

$$I_O = I_{REF} / [1 + 2/\beta(2+\beta)]$$
 [1]
 $= (0.25 \text{ m})/[1 + 2/(80 \text{ x } 82)]$ [1]
 $= 0.2499 \text{ mA}$ [1]
 $R_O = (\beta r_{O3}) / 2 = (\beta V_A) / (2 I_O)$ [2]
 $= (80 \text{ x } 100) / (2 \text{ x } 0.2499 \text{ m})$ [1]
 $= 16.004 \text{ M}\Omega$ [1]
(b)
 $I_O = dV_O / R_O$ [1]
 $= 4.5 / 16.004 \text{ M}$ [1]
 $= 0.281 \mu \text{ A}$ [1]

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_C}$$

 $\overline{I_{CQ}}$

. Prepared by: Dr Jamaludin Bin Omar

	Name:	Dr JBO
	Student ID Number:	Model answer
EEEB273 - Ouiz 2	Section: 01A/B 02A/B	
SEMESTER 2, ACADEMIC YEAR 2015/2016	Lecturer: Dr. Jamaludin Bin Omar	
Date: 16 Nov 2015 Time: 15 minutes	:	

Question:

Refer to the **Wilson** current source shown in Figure 1. Assume the reference current I_{REF} is 0.25 mA. The transistor parameters are V_{BE} (on) = 0.7 V, $V_A = 120$ V, and $\beta = 90$.

(a) Determine the output resistance R_0 looking into the collector of Q_3 .

(b) What is the change in I_0 as the output voltage change by +4.5 Volts? [3 marks]

$$i_{C} = I_{S} e^{v_{BE} / V_{T}}; \text{npn}$$
$$i_{C} = I_{S} e^{v_{EB} / V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

[7 marks]

;Small signal

Answer:

(a)

$$I_O = I_{REF} / [1 + 2/\beta(2+\beta)]$$
 [1]
 $= (0.25m)/[1 + 2/(90 \times 92)]$ [1]
 $= 0.2499 \text{ mA}$ [1]
 $R_O = (\beta r_{O3}) / 2 = (\beta V_A) / (2 I_O)$ [2]
 $= (90 \times 120) / (2 \times 0.2499m)$ [1]
 $= 21.605 \text{ M}\Omega$ [1]
(b)
 $I_O = dV_O / R_O$ [1]
 $= 4.5 / 21.605M$ [1]
 $= 0.208 \mu \text{A}$ [1]

$$\beta = g_m r_\pi$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_\pi = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$

	Name:	Dr JBO
	Student ID Number:	Model answer
FFFB273 - Ouiz 2	Section: 01A/B 02A/B	
SEMESTER 2, ACADEMIC YEAR 2015/2016	Lecturer: Dr. Jamaludin Bin Omar	
Date: 16 Nov 2015 Time: 15 minutes	;	

Question:

Refer to the **Wilson** current source shown in Figure 1. Assume the reference current I_{REF} is 0.25 mA. The transistor parameters are V_{BE} (on) = 0.7 V, $V_A = 100$ V, and $\beta = 90$.

- (a) Determine the output resistance R_0 looking into the collector of Q_3 .
- (b) What is the change in I₀ as the output voltage change by +5 Volts?

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}; \text{npm}$$
$$i_{C} = I_{S} e^{v_{EB}/V_{T}}; \text{pnp}$$
$$i_{C} = \alpha i_{E} = \beta i_{B}$$
$$i_{E} = i_{B} + i_{C}$$
$$\alpha = \frac{\beta}{\beta + 1}$$

[7 marks]

[3 marks]

;Small signal

Answer:

(a)

$$I_O = I_{REF} / [1 + 2/\beta(2+\beta)]$$
 [1]
 $= (0.25m)/[1 + 2/(90 \times 92)]$ [1]
 $= 0.2499 \text{ mA}$ [1]
 $R_O = (\beta r_{O3}) / 2 = (\beta V_A) / (2 I_O)$ [2]
 $= (90 \times 100) / (2 \times 0.2499 \text{ m})$ [1]
 $= 18.004 \text{ M}\Omega$ [1]
(b)
 $I_O = dV_O / R_O$ [1]
 $= 5 / 18.004 \text{ M}$ [1]
 $= 0.278 \mu \text{A}$ [1]

$$\beta = g_m r_{\pi}$$
$$g_m = \frac{I_{CQ}}{V_T}$$
$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$
$$r_o = \frac{V_A}{I_{CQ}}$$